Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 5 . 7 . 9 . 11 + 15 . 17 . 19
5 . 7 . 9 . 11 \(⋮\)5 và 15 . 17 . 19 \(⋮\)5
=> A = 5 . 7 . 9 . 11 + 15 . 17 . 19 \(⋮\)5
=> A là hợp số
Trả lời :
A = 5.7.9.11 + 15.17.19
Ta thấy :
5.( 7.9.11 ) \(⋮\)5 và 15.( 17.19 ) \(⋮\)5
\(\Rightarrow\)A = 5.7.9.11 + 15.17.19 \(⋮\)5
\(\Rightarrow\)A là hợp số .
- Study well -
a) 109+2 =10....02 \(⋮\)3
Vì 1+0+0+....+2=3
b) 5.7.9.11 chia hết cho 3 (vì 9 chia hết cho 3)
104.105.106 chia hết cho 3 (vì 105 chia hết cho 3)
=> 5.7.9.11+104.105.106 là hợp số
hợp số. vì p > 3 => p khong chia hết cho 2
=>p2 khong chia het cho 2
=> p2 + 2003 chia hết cho 2
mà p2 + 2003 khác 2
=> p2+2003 là hợp số
số 29,17 là số nguyên tố vì hai số chỉ có ước là 1 và chính nó
số 235,147 là hợp số vì nó có ít nhất 3 ước là 1,A, và chính nó
vì A = 1.2.3.4.5.....98.99.100 là hợp số vì có nhiều hơn 2 ước
mà 111 cũng là hợp số nên A+111 là hợp số
tick mình nhé!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
khi nào câu hỏi mình lên bạn nhớ trả lời hộ mình nhé
a) 5 .6 .7 + 312 = 210 + 312 = 522
Ư(522) = (2;3;6;9;18;29;58;87;261;522)
Vì 522 có nhiều hơn 2 ước nên 522 ko thể là số nguyên tố
Vậy 522 là hợp số
b)27 .15 .11 - 198 = 4455 - 198 = 4257
Ư(4257) = (3;11;43;...;1419;4257)
Vì 4257 có nhiều hơn 2 ước nên 4257 ko thể là số nguyên tố
Vậy 4257 là hợp số
Giải thích các bước giải:
Với pp nguyên tố và một trong hai số 8p+1,8p−18p+1,8p−1 là số nguyên tố thì số thứ ba là một hợp số. Thật vậy:
+) Với pp và 8p+18p+1 là số nguyên tố thì ta có:
∙∙ Xét p=2p=2. Khi đó ta có:
8p+1=8.2+1=178p+1=8.2+1=17 là số nguyên tố, 8p−1=8.2−1=158p−1=8.2−1=15 là hợp số.
Vậy bài toán đúng với p=2p=2
∙∙ Xét p=3p=3 thì 8p+1=8.3+1=258p+1=8.3+1=25 là hợp số (trái với giả thiết)
∙∙ Xét p≠3p≠3. Vì pp là số nguyên tố nên pp không chia hết cho 33.
Giả sử pp chia 33 dư 1⇒p=3k+1(k∈N)1⇒p=3k+1(k∈N).
Khi đó: 8p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮38p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮3
⇒⇒ 8p+18p+1 là hợp số (trái với giả thiết).
Do đó pp chia 3 dư 2, hay p=3k+2 (k∈N)p=3k+2 (k∈N)
Khi đó: 8p−1=8.(3k+2)−1=24k+15=3.(8k+5)⋮3⇒8p−1=8.(3k+2)−1=24k+15=3.(8k+5)⋮3⇒ 8p−18p−1 là hợp số.
Vậy, nếu 8p+18p+1 và pp đều là số nguyên tố thì 8p−18p−1 là hợp số.
+) Với pp và 8p−18p−1 là số nguyên tố thì ta có:
∙∙ Xét p=2p=2. Khi đó ta có:
8p−1=8.2−1=158p−1=8.2−1=15 là hợp số (trái với giả thiết)
∙∙ Xét p=3p=3. Khi đó ta có:
8p−1=8.3−1=238p−1=8.3−1=23 là số nguyên tố, 8p+1=8.3+1=25⋮58p+1=8.3+1=25⋮5 là hợp số.
Vậy bài toán đúng với p=3p=3
∙∙ Xét p≠3p≠3. Vì pp là số nguyên tố nên pp không chia hết cho 33.
Giả sử pp chia 33 dư 2⇒p=3k+2(k∈N)2⇒p=3k+2(k∈N).
Khi đó: 8p−1=8.(3k+2)−1=24k+16−1=24k+15=3.(8k+5)⋮38p−1=8.(3k+2)−1=24k+16−1=24k+15=3.(8k+5)⋮3
⇒⇒ 8p−18p−1 là hợp số (trái với giả thiết).
Do đó pp chia 3 dư 1, hay p=3k+1 (k∈N)p=3k+1 (k∈N)
Khi đó: 8p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮3⇒8p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮3⇒ 8p+18p+1 là hợp số.
Vậy, nếu 8p−18p−1 và pp đều là số nguyên tố thì 8p+18p+1 là hợp số
Cho p và 8p - 1 là các số nguyên tố . Chứng minh rằng 8p + 1 là hợp số .
* Nếu p = 3 \(\Rightarrow\) 8p - 1 = 23 là nguyên tố , 8p + 1 = 25 là hợp số ( thỏa mãn )
* Xét : p # 3
Ta thấy : p - 1 , p , p + 1 là 3 số nguyên liên tiếp , nên phải có 1 số chia hết cho 3 .
p nguyên tố khác 3 nên p - 1 hoặc p + 1 chia hết cho 3 \(\Rightarrow\) ( p - 1 ) ( p + 1 ) chia hết cho 3 .
Vậy : ( 8p - 1 ) ( 8p + 1 ) = 64p2 - 1 = 63p2 + p2 - 1 = 3 . 21p2 + ( p - 1 ) ( p + 1 ) chia hết cho 3 .
Vì 8p - 1 là số nguyên tố lớn hơn 3 \(\Rightarrow\) 8p + 1 chia hết cho 3 , hiển nhiên 8p + 1 > 3
\(\Rightarrow\) 8p + 1 là hợp số .
Bạn tham khảo bài của mình nhé !!
ban giai cụ thể ra cho mình nha! mình sẽ k cho !!! thank you
vì 5.7.9.11 chia hết cho 5 và 15.17.19 chia hết cho 5 => 5.7.9.11+15.17.19 chia hết cho 5
=> A là hợp số
1 đầu tiên bạn tính ra kết quả
2 so sánh ở dưới trang cuối cùng của sánh giáo khoa toán 6 tập 1 vì ở đó có bảng số nguyên tố nha
mình không tính được ne cứ làm như bước trên nha
học tốt