K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2023

`@` `\text {Answer}`

`A = -3x^2 - 0,5x^2 + 2,5x^2`

`= (-3 - 0,5 + 2,5)x^2`

`= (-3,5+2,5)x^2`

`= -x^2`

Hệ số: `-1`

Phần biến: `x`

Bậc: `2`

`b)`

Thay `x = -1/2`

`- (-1/2)^2`

`= - (1/4)`

`= -1/4`

Vậy, `A = -1/4.`

13 tháng 7 2023

a) \(N=5xy^2+3xy^2++y^2x\)

\(N=\left(5+3+1\right)xy^2\)

\(N=9xy^2\)

Hệ số: 9

Bậc: 1+2=3

Biến: \(xy^2\)

b) Thay \(x=-\dfrac{1}{2};y=-3\) vào N ta có:

\(N=9\cdot\left(-\dfrac{1}{2}\right)\cdot\left(-3\right)^2=-\dfrac{81}{2}\)

Vậy: ...

25 tháng 8 2016

1. Ta có:

 \(P=ax^3+bx^2+25x+5ax^2+5bx+125=ax^3+\left(b+5a\right)x^2+\left(25+5b\right)x+125\)

Vậy để P = Q thì \(\hept{\begin{cases}a=1\\b+5a=0\\25+5b=0\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=-5\end{cases}}}\)

2. Hoàn toàn tương tự.

a: A=-2/3x^4y^3

Hệ số: -2/3

Bậc: 7

b: Khi x=-1 và y=1 thì A=-2/3

a: D=-1/3x^4y^3

Hệ số: -1/3

Biến; x^4;y^3

b: khi x=1 và y=2 thì D=-1/3*1^4*2^3=-8/3

24 tháng 9 2024

a; A = (7\(x\) + 5)2 + (3\(x-5\))2 - (10 - 6\(x\)).(5 + 7\(x\)

   A = 49\(x^2\) + 70\(x\) + 25 + 9\(x^2\) - 30\(x\) + 25 - 50 - 70\(x\) + 30\(x\) + 42\(x^2\)

   A = (49\(x^2\) + 9\(x^2\) + 42\(x^2\)) + (70\(x-70x\)) - (30\(x\) - 30\(x\)) + (25+25-50)

   A =  100\(x^2\) + 0 + 0 + (50 - 50)

   A = 100\(x^2\) + 0 + 0 + 0

   A = 100\(x^2\) 

Thay  \(x=-2\) vào A = 100\(x^2\) ta có:

  A = 100.(-2)2

  A = 100.4

 A =  400.

1) cho A=x/x-1 + x/x+1 (x ko bằng +-1) và B=X^2-x/x^2-1 (x ko bằng +-1)a)rút gọn A và tính A khi x=2b)Rút gọn B và tìm x để B=2/5c)tìm x thuộc Z  để (A,B)thuộc Z 2)A =(2+x/2-x - 4x^2/x^2-4 - 2-x/2+x) : x^2 - 3x/2x^2 - x^3a)rút gọn biểu thức A   b) tính giá trị biểu thức A khi /x-5/=2c)tìm x để A>03)B= x+2/x+3 - 5/x^2+x-6 - 1/2-xa)rút gọn biểu thức B    b)tìm x để B=3/2   c) tìm giá trị nguyên của x để B có giả trị...
Đọc tiếp

1) cho A=x/x-1 + x/x+1 (x ko bằng +-1) và B=X^2-x/x^2-1 (x ko bằng +-1)
a)rút gọn A và tính A khi x=2
b)Rút gọn B và tìm x để B=2/5
c)tìm x thuộc Z  để (A,B)thuộc Z
 
2)A =(2+x/2-x - 4x^2/x^2-4 - 2-x/2+x) : x^2 - 3x/2x^2 - x^3
a)rút gọn biểu thức A   b) tính giá trị biểu thức A khi /x-5/=2
c)tìm x để A>0

3)B= x+2/x+3 - 5/x^2+x-6 - 1/2-x
a)rút gọn biểu thức B    b)tìm x để B=3/2   c) tìm giá trị nguyên của x để B có giả trị nguyên

4)C= (2x/2x^2-5x+3 - 5/2x-3) : (3+2/1-x)
a)rút gọn biểu thức C    b) tìm giá trị nguyên của biểu thức C biết :/2x-1/=3
c)tìm x để B >1         d) tìm giá trị nhỏ nhất của biểu thức C

5)D=(1 + x/x^2+1) : (1/x-1 - 2x/x^3+x-x^2-1)
a)rút gọn biểu thức D 
b)tìm giá trị của x sao cho D<1
c)tìm giá trị nguyên của x để B có giá trị nguyên
 

2
7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

17 tháng 5 2020

Bài 1:

a) \(A=\left(-\frac{1}{3}xz^2y\right).\left(-9zy^3x^2\right)\)

\(=3x^3y^4z^3\)

b) Hệ số: 3

Biến: x3y4z3

Bậc: 10

Bài 2:

a) \(B=\left(-\frac{1}{2}zxy^2\right).\left(-8x^2y^3z\right)\)

\(=4x^3y^5z^2\)

b) Hệ số: 4

Biến: x3y5z2

Bậc: 10

#Học tốt!

17 tháng 5 2020

Mơn nhìu ạ

3 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne1\end{cases}}\)

\(A=\frac{2x+1}{x^2-3x+2}+\frac{x+1}{1-x}-\frac{x^2+5}{x^2-3x+2}+\frac{x^2+x}{x-1}\)

\(\Leftrightarrow A=\frac{2x+1}{\left(x-1\right)\left(x-2\right)}-\frac{x+1}{x-1}-\frac{x^2+5}{\left(x-2\right)\left(x-1\right)}+\frac{x^2+x}{x-1}\)

\(\Leftrightarrow A=\frac{2x+1-\left(x+1\right)\left(x-2\right)-x^2-5+\left(x^2+x\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}\)

\(\Leftrightarrow A=\frac{2x+1-x^2+x+2-x^2-5+x^3-x^2-2x}{\left(x-1\right)\left(x-2\right)}\)

\(\Leftrightarrow A=\frac{x^3-3x^2+x-2}{\left(x-1\right)\left(x-2\right)}\)

b) Khi \(x^2-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=.0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=-1\left(tm\right)\end{cases}}\)

\(\Leftrightarrow A=\frac{\left(-1\right)^3-3\left(-1\right)^2-1-2}{\left(-1-2\right)\left(-1-1\right)}=\frac{\left(-1\right)-3-1-2}{\left(-3\right)\left(-2\right)}=\frac{7}{6}\)

c) Để A = 0

\(\Leftrightarrow\frac{x^3-3x^2+x-2}{\left(x-1\right)\left(x-2\right)}=0\)

\(\Leftrightarrow x^3-3x^2+x-2=0\)2.89328919

Phần này mik k biết phân tích như thế nào, tính ra :

\(\Leftrightarrow x\approx2,89328919\)

Nhưng nếu đề bắt tìm nghiệm nguyên của x thì \(S=\varnothing\)nhé !

d) Để \(A\inℤ\)

\(\Leftrightarrow x^3-3x^2+x-2⋮\left(x-2\right)\left(x-1\right)\)

\(\Leftrightarrow\hept{\begin{cases}x^3-3x^2+x-2⋮x-2\\x^3-3x+x-2⋮x-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x^2-x-1\right)\left(x-2\right)-4⋮x-2\\\left(x^2-2x-1\right)\left(x-1\right)-3⋮x-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4⋮x-2\\3⋮x-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\\x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\in\left\{1;3;0;4;-2;6\right\}\\x\in\left\{0;2;-2;4\right\}\end{cases}}\)

\(\Leftrightarrow x\in\left\{0;-2;4\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{0;-2;4\right\}\)