K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2015

\(A=1+2^2+2^3+...+2^{100}\)

\(\Rightarrow2A=2+2^3+2^4+...+2^{101}\)

\(\Rightarrow A=2A-A=\left(2+2^{101}\right)-\left(1+2^2\right)=2^{101}-3\)

Ta có \(2^{50}.A+1=2^{50}.\left(2^{101}-3\right)+1=2^{151}-2^{50}.3+1=....\)

Chắc là n = 150

26 tháng 10 2015

A = 1+2+22+23+....+2100

2A = 2+22+23+24+...+2101

2A - A = 2101 - 1

=> A = 2101 - 1

=> A + 1 = 2101

=> 250.(A + 1) = 250.2101 = 2151

Mà 250.(A + 1) = 2m

=> 2151 = 2m

=> m = 151

29 tháng 9 2018

A=1+2+22+......+2100

=>2A=2+2223+......+2100+2101

=>2A-A=(2+22+23+....+2101)-(1+2+22+.....+2100)

=>A=2101-1

29 tháng 9 2018

B=3+32+...+350

2B=32+33+..+351

2B-B=(32+33+......+351)-(3+32+...+350)

B=351-3

1 tháng 4 2022

3/4 +3 =

7 tháng 5 2016

1. Ta có:

3A = 3^2 + 3^3+3^4+...+3^101

=> 3A-A= (3^2+3^3+3^4+...+3^101) - (3+3^2+3^3+...+3^100)

<=> 2A= 3^101-3

=> 2A +3 = 3^101

Mà 2A+3=3^n

=> 3^101 = 3^n => n=101

7 tháng 5 2016

2. M=3+32+33+34+...+3100

=>3M=32+33+34+35+...+3101

=>3M-M= 3101-3 ( chỗ này bạn tự làm được nhé) 

=>   M=\(\frac{3^{101}-3}{2}\)

a) Ta co : 3101=(34)25 .3=8125.3

Bạn học đồng dư thức rồi thì xem:

  Vì 81 đồng dư với 1 (mod 8) => 8125 đồng dư với 1 (mod 8)=> 8125.3 đồng dư với 1.3=3(mod 8)

=> 8125.3-3 đồng dư với 3-3=0 (mod 8)=> 8125.3-3 chia hết cho 8

=>\(\frac{81^{25}.3-3}{2}\)chia hết cho 4=> M chia hết cho 4 (1)

Ma M=3101-3 chia hết cho 3                              (2)

Từ (1) và (2) => M chia hết cho 12

b)\(2\left(\frac{3^{101}-3}{2}\right)+3=3^n\)

=> 3101-3 +3 =3n

=> 3101=3n=> n = 101

     

                                   

20 tháng 3 2016

nhanh giúp mình

17 tháng 1 2022

Bài 1

a/

\(A=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+10\left(11-1\right)=\)

\(=\left(1.2+2.3+3.4+...+10.11\right)-\left(1+2+3+...+10\right)=\)

Đặt \(B=1.2+2.3+3.4+...+10.11\)

\(\Rightarrow3B=1.2.3+2.3.3+3.4.3+...+10.11.3=\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+10.11.\left(12-9\right)=\)

\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-9.10.11+10.11.12=\)

\(=10.11.12\Rightarrow B=\frac{10.11.12}{3}=4.10.11\)

\(\Rightarrow A=B-\left(1+2+3+...+10\right)=4.10.11+\frac{10.\left(1+10\right)}{2}=\)

\(=4.10.11+5.11=11.\left(4.10+5\right)=11.45=495\)

b/

\(B=5^2\left(1+2^2+3^2+...+10^2\right)=25.495=12375\)

Bài 2

Số số hạng của M \(=\frac{2n-1-1}{2}+1=n\)

\(M=\frac{n\left[1+\left(2n-1\right)\right]}{2}=n^2\)là số chính phương

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

1.

Đặt $A=2+2^2+2^3+...+2^{100}$

$2A=2^2+2^3+2^4+...+2^{101}$

$\Rightarrow 2A-A=2^{101}-2$

$\Rightarrow A=2^{101}-2$

Có: 

$A+n=510$

$2^{101}-2+n=510$

$n=510+2-2^{101}=512-2^{101}$

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

2.

$A=7+(7^2+7^3)+(7^4+7^5)+....+(7^{20}+7^{21})$

$=7+7^2(1+7)+7^4(1+7)+...+7^{20}(1+7)$

$=7+(1+7)(7^2+7^4+....+7^{20})$

$=7+8(7^2+7^4+...+7^{20)$

$\Rightarrow A$ chia 8 dư 7.

22 tháng 9 2019

A= 75×[(42011 - 1)/3] +25

A = 25×(42011- 1) +25

A= 25×4×42010 - 25 +25

A= 100 × 42010

A chia hết cho 100

10 tháng 12 2022

Bài 2:

\(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^9\left(1+5\right)\)

\(=6\left(5+5^3+...+5^9\right)⋮6\)