Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2^2+2^3+...+2^{100}\)
\(\Rightarrow2A=2+2^3+2^4+...+2^{101}\)
\(\Rightarrow A=2A-A=\left(2+2^{101}\right)-\left(1+2^2\right)=2^{101}-3\)
Ta có \(2^{50}.A+1=2^{50}.\left(2^{101}-3\right)+1=2^{151}-2^{50}.3+1=....\)
Chắc là n = 150
A= 1+2+22+...+2100
=> 2A= 2+22+24+...+2101
=> 2A-A= ( 2+22+24+...+2101) -( 1+2+22+...+2100)
=> A=2101-1
A = 1 + 2 + 22 + 23 + .... + 2100
2A = 2 + 22 + 23 + 24 + ... + 2101
2A - A = 2 + 22 + 23 + 24 + ... + 2101 - ( 1 + 2 + 22 + 23 + .... + 2100)
A = 2 + 22 + 23 + 24 + ... + 2101 - 1 - 2 - 22 - 23 - .... - 2100
A = 2101 - 1
2A=2+22+23+...+2101
2A+1=1+2+22+...+2101=A+2101
2A-A=2101-1
A=2101-1
nên 250*(A+1)=250*(2101-1+1)=250*2101=2151
Vậy m=151
Ban dich day :
Cho A=1+2+22+23+...+2100
Neu 250. (A+1)=2m thi m=
Tra loi: m=
Tich nha!
\(3A=3^2+3^3+....+3^{101}\)
\(3A-A=\left(3^2-3^2\right)+\left(3^3-3^3\right)+......+3^{101}-3\)
\(2A=3^{101}-3\)
A = \(\frac{3^{101}-3}{2}\)
\(2^{50}\left(A.2+1\right)=2^{50}.\left(\frac{3^{101}-3}{2}.2+1\right)=2^{50}.\left(3^{101}-2\right)\)
A = 3 + 32 + 33 + ... + 3100
3A = 32 + 33 + ... + 3101
3A - A = 3101 - 3
2A = 3101 - 3
=> 250(3101 - 3 + 1 )
= 250.3101 - 2
A=1+2+22+......+2100
=>2A=2+2223+......+2100+2101
=>2A-A=(2+22+23+....+2101)-(1+2+22+.....+2100)
=>A=2101-1
B=3+32+...+350
2B=32+33+..+351
2B-B=(32+33+......+351)-(3+32+...+350)
B=351-3
A = 1+2+22+23+....+2100
2A = 2+22+23+24+...+2101
2A - A = 2101 - 1
=> A = 2101 - 1
=> A + 1 = 2101
=> 250.(A + 1) = 250.2101 = 2151
Mà 250.(A + 1) = 2m
=> 2151 = 2m
=> m = 151