K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2016

Bạn tham khảo nha http://olm.vn/hoi-dap/question/570061.html

4 tháng 5 2016

Giả sử 2 số trong 5 số không bằng nhau.

VD: a<b (1)


Trong 2 lũy thừa bằng nhau thì lũy thừa có cơ số nhỏ hơn sẽ có số mũ lớn hơn và ngược lại
 

Vì vậy do a^b=bc. Mà a<bc<b
 

Ta có b^c=c^d mà c<bc<d 
 

Ta có c^d=d^e mà c<de<d 
 

Ta có d^e=e^a mà e<da>e 
 

Ta có e^a=a^b mà a>ea>b (2)
 

Từ (1) và (2) ~~> điều giả sử sai
 

Vậy e (đpcm)

NV
12 tháng 3 2023

Ta có: \(1\le a\le b< c\le d\le e\le9\)

\(\Rightarrow1\le a< b+1< c+1< d+2< e+3\le12\)

Đặt \(\left\{a;b+;c+1;d+2;e+3\right\}=\left\{a_1;a_2;a_3;a_4;a_5\right\}\)

Với mỗi bộ \(a_1;a_2;a_3;a_4;a_5\) sẽ cho tương ứng đúng một bộ abcde và ngược lại

\(\Rightarrow\) Số chữ số dạng \(abcde\) bằng với số bộ \(a_1a_2a_3a_4a_5\) sao cho:

\(1\le a_1< a_2< a_3< a_4< a_5\le12\)

Chọn bộ 5 chữ số khác nhau từ 12 chữ số có \(C_{12}^5\) cách

Có đúng 1 cách sắp xếp 5 chữ số này theo thứ tự lớn dần

\(\Rightarrow\) Có \(C_{12}^5\) chữ số tự nhiên thỏa mãn yêu cầu

Có \(A^5_9=15120\left(số\right)\)

Số lượng số cần tìm sẽ là A59=15120(sô)

CHúng ta chỉ cần lựa ra 5 số từ 9 số {1;2;...;9} rồi sắp xếp lại là đc

28 tháng 9 2017

Áp dụng cauchy-schwarz:

\(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{d+e}+\dfrac{d}{e+a}+\dfrac{e}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+bd}+\dfrac{c^2}{cd+ce}+\dfrac{d^2}{ed+ad}+\dfrac{e^2}{ae+be}\ge\dfrac{\left(a+b+c+d\right)^2}{ab+ac+ad+ae+bc+bd+be+cd+ce+de}\)

Giờ chỉ cần chứng minh

\(ab+ac+ad+ae+bc+bd+be+cd+ce+de\le\dfrac{2}{5}\left(a+b+c+d+e\right)^2\)

\(\Leftrightarrow ab+ac+ad+ae+bc+bd+be+cd+ce+de\le2\left(a^2+b^2+c^2+d^2+e^2\right)\)

điều này hiển nhiên đúng theo AM-GM:

\(ab\le\dfrac{a^2+b^2}{2};ac\le\dfrac{a^2+c^2}{2};ad\le\dfrac{a^2+d^2}{2}...\)

Cứ vậy ta thu được đpcm .Dấu = xảy ra khi a=b=c=d=e

P/s: : ]

5 tháng 11 2019

1 tấn +100km3+1km2+1000m=

giúp mình với help me

5 tháng 11 2019

ko cùng đơn vị sao tính nhỉ gunny

2 tháng 10 2017

Neet, Bùi Thị Vân phynit thầy cô giúp em với ạ em cảm ơn nhắm nhắm

9 tháng 2 2022

\(a+b+c+d+e\ge a\left(b+c+d+e\right)\)

\(\Leftrightarrow\left(a-kb\right)^2+\left(a-kc\right)^2+\left(a-kd\right)^2+\left(a-ke\right)^2\ge0\)

Ta chọn \(k=2\)hay nhân 2 vế với 4

*Xét hiệu 2 vế bất đẳng thức.

\(a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\)

\(=\frac{4\left(a^2+b^2+c^2+d^2+e^2\right)-4\left(ab+ac+ad+ae\right)}{4}\)

\(=\frac{\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+\left(a^2-4ae+4e^2\right)}{4}\)

\(=\frac{\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2}{4}\ge0\)

\(\Rightarrow a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\)

Đẳng thức xảy ra khi\(a=2b=2c=2d=2e\)

22 tháng 3 2016

@Bài sửa

Với a, b, c, d là các số tự nhiên

\(\Rightarrow\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{b+c+a};\frac{c}{c+a}>\frac{c}{c+a+b}\)

\(\Rightarrow M>\left(\frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}\right)\)

\(\Rightarrow M>1\)                (*)

Ta lại có:

\(\frac{a}{a+b}<\frac{a+b}{a+b+c};\frac{b}{b+c}<\frac{b+c}{b+c+a};\frac{c}{c+a}<\frac{c+a}{c+a+b}\)

\(\Rightarrow M<\left(\frac{a+b}{a+b+c}+\frac{b+c}{b+c+a}+\frac{c+a}{c+a+b}\right)\)

\(\Rightarrow M<2\)               (**)

Từ (*) và (**) ta có 1 < M < 2 suy ra M không là số tự nhiên

leu

20 tháng 3 2016

Với a, b, c, d là các số tự nhiên

\(\Rightarrow\frac{a}{a+b}<\frac{a}{a+b+c};\frac{b}{b+c}<\frac{b}{b+c+a};\frac{c}{c+a}<\frac{c}{c+a+b}\)

\(\Rightarrow M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<\frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}=1\)

\(\Rightarrow M<1\)           (*)

Ta lại có: 

\(\frac{a}{a+b}>\frac{a+b}{a+b+c};\frac{b}{b+c}>\frac{b+c}{b+c+a};\frac{c}{c+a}>\frac{c+a}{c+b+a}\)

\(\Rightarrow M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b}{a+b+c}+\frac{b+c}{b+c+a}+\frac{c+a}{c+a+b}=2\)

\(\Rightarrow M<2\)           (**)

Từ (*) và (**) ta có 1 < M < 2 suy ra M không là số tự nhiên