Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từng sau nếu tag bạn tag tên dưới câu trả lời nhé, tag thế này không nhận được thông báo đâu .
Bài này tốn sức quá, đau đầu
Lời giải:
Sử dụng \(\sum\) biểu hiện tổng các hoán vị nhé.
Áp dụng BĐT Cauchy-Schwarz:
\(\text{VT}=\frac{a^2}{a\sqrt{(b+2)(c+2)}}+\frac{b^2}{b\sqrt{(c+2)(a+2)}}+\frac{c^2}{c\sqrt{(a+2)(b+2)}}\geq \frac{(a+b+c)^2}{\sum a\sqrt{(b+2)(c+2)}}\)
Tiếp tục Cauchy-Schwarz:
\((\sum a\sqrt{(b+2)(c+2)})^2\leq (ab+2a+bc+2b+ac+2c)(ac+2a+ba+2b+bc+2c)\)
\(\Leftrightarrow \sum a\sqrt{(b+2)(c+2)}\leq (ab+bc+ac+2a+2b+2c)\)
\(\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{ab+bc+ac+2(a+b+c)}\)
Ta sẽ đi chứng minh \(\frac{(a+b+c)^2}{ab+bc+ac+2(a+b+c)}\geq 1\Leftrightarrow (a+b+c)^2\geq ab+bc+ac+2(a+b+c)\)
\(\Leftrightarrow a^2+b^2+c^2+ab+bc+ac\geq 2(a+b+c)\)
\(\Leftrightarrow (a^2+b^2+c^2)+(a+b+c)^2\geq 4(a+b+c)\)
\(\Leftrightarrow 4-abc+(a+b+c)^2\geq 4(a+b+c)\Leftrightarrow (a+b+c-2)^2\geq abc\)
\(\Leftrightarrow a+b+c\geq \sqrt{abc}+2\)
Do \(a^2+b^2+c^2+abc=4\Rightarrow \)
tồn tại $x,y,z>0$ sao cho:\((a,b,c)=\left ( 2\sqrt{\frac{xy}{(z+x)(z+y)}};2\sqrt{\frac{yz}{(x+y)(x+z)}};2\sqrt{\frac{xz}{(y+x)(y+z)}} \right )\)
Khi đó , thực hiện vài bước rút gọn, BĐT cần chứng minh chuyển về:
\(\sum \sqrt{xy(x+y)}\geq \sqrt{2xyz}+\sqrt{(x+y)(y+z)(x+z)}\)
Bình phương hai vế:
\(\Leftrightarrow \sum xy(x+y)+2\sqrt{xy^2z(x+y)(y+z)}\geq 2xyz+\prod (x+y)+2\sqrt{2xyz(x+y)(y+z)(x+z)}\)
\(\Leftrightarrow \sum\sqrt{xy^2z(x+y)(y+z)}\geq 2xyz+\sqrt{2xyz(x+y)(y+z)(x+z)}\)
\(\Leftrightarrow \sum \sqrt{y(y+x)(y+z)}\geq 2\sqrt{xyz}+\sqrt{2(x+y)(y+z)(x+z)}\) \((\star)\)
Đặt biểu thức vế trái là $A$
\(A^2=\sum y(y+x)(y+z)+2\sum\sqrt{[y(y+x)(y+z)][x(x+y)(x+z)]}\)
\(A^2=\sum x^3+\sum xy(x+y)+3xyz+2\sum \sqrt{[(x^2(x+y+z)+xyz][y^2(x+y+z)+xyz]}\)
Áp dụng BĐT C-S : \([x^2(x+y+z)+xyz][y^2(x+y+z)+xyz]\geq [xy(x+y+z)+xyz]^2\)
\(\Rightarrow A^2\geq \sum x^3+\sum xy(x+y)+3xyz+2\sum [xy(x+y+z)+xyz]\)
\(\Leftrightarrow A^2\geq \sum x^3+3\sum xy(x+y)+15xyz\)
Theo BĐT Schur: \(\sum x^3+3xyz\geq \sum xy(x+y)\)
\(\Rightarrow A^2\geq 4\sum xy(x+y)+12xyz=4[\sum xy(x+y)+3xyz]=4(x+y+z)(xy+yz+xz)\)
\(\Leftrightarrow A\geq 2\sqrt{(x+y+z)(xy+yz+xz)}\)
Ta cần chứng minh \(2\sqrt{(x+y+z)(xy+yz+xz)}\geq 2\sqrt{xyz}+\sqrt{2(x+y)(y+z)(x+z)}\) (1)
Đặt \(\sqrt{(x+y+z)(xy+yz+xz)}=t\), bằng AM-GM dễ thấy \(t^2\geq 9xyz\)
\((1)\Leftrightarrow 2t\geq 2\sqrt{xyz}+\sqrt{2(t^2-xyz)}\)
\(\Leftrightarrow 4t^2\geq 4xyz+2(t^2-xyz)+4\sqrt{2xyz(t^2-xyz)}\)
\(\Leftrightarrow t^2\geq xyz+2\sqrt{2xyz(t^2-xyz)}\) (2)
Áp dụng AM-GM: \(2\sqrt{xyz(t^2-xyz)}=\sqrt{8xyz(t^2-xyz)}\leq \frac{8xyz+t^2-xyz}{2}=\frac{7}{2}xyz+\frac{t^2}{2}\)
Và \(xyz\leq \frac{t^2}{9}\)
\(\Rightarrow xyz+2\sqrt{2xyz(t^2-xyz)}\leq t^2\)
Do đó (2) đúng kéo theo (1) đúng kéo theo (*) đúng nên ta có đpcm.
Dấu bằng xảy ra khi $a=b=c=1$
Bài 2: Restore : a;b;c không âm thỏa \(a^2+b^2+c^2=1\)
Tìm Min & Max của \(M=\left(a+b+c\right)^3+a\left(2bc-1\right)+b\left(2ac-1\right)+c\left(2ab-1\right)\)
Bài 4: Tương đương giống hôm nọ thôi : V
Bài 5 : Thiếu ĐK thì vứt luôn : V
Bài 7: Tương đương
( Hoặc có thể AM-GM khử căn , sau đó đổi \(\left(a;b;c\right)\rightarrow\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\) rồi áp dụng bổ đề vasile)
Bài 8 : Đây là 1 dạng của BĐT hoán vị
@Ace Legona @Akai Haruma @Hung nguyen @Hà Nam Phan Đình @Neet
1. a) Tập hợp con của A: {a} và \(\varnothing\)
b) Tập hợp con của B: {a}; {b}; {a;b} và \(\varnothing\)
c) Tập hợp con: \(\varnothing\)
2. a) A có 1 phần tử thì A sẽ có: 21=2 (tập hợp con)
b) A có 2 phần tử thì A sẽ có: 22=4 (tập hợp con)
c) A có 3 phần tử thì A sẽ có: 23=8 (tập hợp con)
*Cách tính số tập hợp con: Nếu tập hợp A có n phần tử thì A sẽ có 2n tập hợp con.
Từ bất đẳng thức Cô si ta có:
\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\left[\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\right]^2\)
\(\Rightarrow\)Ta cần chứng minh:
\(\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
Vì vai trò của a, b, c trong bất đẳng thức như nhau, nên không mất tính tổng quát ta giả sử \(a\ge b\ge c\)nên bất đẳng thức cuối cùng đùng. Vậy bất đẳng thức được chứng minh.
Neet, Bùi Thị Vân phynit thầy cô giúp em với ạ em cảm ơn nhắm nhắm