Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(3a-2b+c\right)^2=9a^2+4b^2+c^2+2\left(3ac-6ab-2bc\right)\)
\(\Rightarrow b^2=9a^2+4b^2+c^2\)
(vì \(3a-3b+c=0\Leftrightarrow3a-2b+c=-b\), \(6ab+2bc-3ac=0\))
\(\Leftrightarrow9a^2+3b^2+c^2=0\)
\(\Leftrightarrow a=b=c=0\).
Khi đó: \(P=\left(-1\right)^{2019}+\left(-1\right)^{2020}+\left(-1\right)^{2021}=-1\)
Ta có:
(3a−2b+c)2=9a2+4b2+c2+2(3ac−6ab−2bc)
⇒b2=9a2+4b2+c2
(vì 3a−3b+c=0⇔3a−2b+c=−b, 6ab+2bc−3ac=0)
⇔9a2+3b2+c2=0
⇔a=b=c=0.
Khi đó: P=(−1)2019+(−1)2020+(−1)2021=−1
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\)
\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{ab+ac+bc}{abc}\right)=1\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+ac+bc\right)-abc=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc\right)+c\left(ab+ac+bc\right)-abc=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-b\\a=-c\\b=-c\end{matrix}\right.\)
Đến đây thì nghi ngờ bạn chép sai đề biểu thức R, lẽ ra phải là dấu nhân mới tính được, nếu ko thì kết quả vẫn còn 2 ẩn
\(R=\left(a^{2017}+b^{2017}\right)\left(b^{2019}+c^{2019}\right)\left(c^{2021}+a^{2021}\right)\)
Thế này mới chính xác, kết quả \(R=0\)
\(2x^2+y^2+z^2-2xy-2x+1=0\)
\(\Rightarrow\left(x^2+y^2-2xy\right)+\left(x^2-2x+1\right)+z^2=0\)
\(\Rightarrow\left(x-y\right)^2+\left(x-1\right)^2+z^2=0\)
\(\Leftrightarrow x=y=1;=0\)
\(A=x^{2018}+y^{2019}+z^{2020}=1+1+0=2\)
2)
\(a+b+c=6\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=36\)
\(\Leftrightarrow12+2\left(ab+bc+ac\right)=36\Leftrightarrow ab+bc+ac=12\)
Kết hợp với \(a^2+b^2+c^2=12\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\)
\(\Leftrightarrow\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(b-c\right)^2+\dfrac{1}{2}\left(c-a\right)^2=0\Leftrightarrow a=b=c\)
Kết hợp với \(a+b+c=6\Leftrightarrow a=b=c=2\)
\(P=\left(a-3\right)^{2019}+\left(b-3\right)^{2019}+\left(c-3\right)^{2019}=\left(-1\right)^{2019}+\left(-1\right)^{2019}+\left(-1\right)^{2019}=-3\)
Binh phương a+b+c=0
Ta có\(a^2+b^2+c^2+2ab+2ab+2bc=0\)
mà\(ab+ac+bc=0\)
=>\(a^2+b^2+c^2=0\)
theo bất đẳng Cauchy ta có \(a^2+b^2+c^2 \) > \(ab+ac+bc\)
mà \(a^2+b^2+c^2=ab+ac+bc=0\)
Dấu"=" xảy ra khi và chỉ ra \(a=b=c\)
mà \(a+b+c=0(giả thiết)\)
=>\(a=b=c=0\)
=> P= \((0-1)^{2017}+0^{2018}+(0+1)^{2019}\)=0
Vậy P=0
theo đề ra ta có \(\left(a+b+c\right)^2=0^2\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
thay ab+bc+ac=0 vào ta được \(a^2+b^2+c^2=0\Rightarrow\hept{\begin{cases}b=0\\a=0\\c=0\end{cases}}\)vì\(\hept{\begin{cases}a^2\ge0\\b^2\ge0\\c^2\ge0\end{cases}}\)
bạn tự thay vào tính nhé
b) \(\left(a^{2019}+b^{2019}\right)^2=\left(a^{2018}+b^{2018}\right)\left(a^{2020}+b^{2020}\right)\Leftrightarrow2a^{2019}b^{2019}=a^{2018}a^{2020}+a^{2020}b^{2018}\Leftrightarrow2ab=a^2+b^2\Leftrightarrow a=b\).
Do a, b dương nên a = b = 1.
Câu a thì bạn áp dụng BĐT Svacxo
Ta có : \(a+b+c=3\Rightarrow\left(a+b+c\right)^2=9\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=9\)
\(\Rightarrow a^2+b^2+c^2=9-2\left(ab+bc+ca\right)=9-2.3=3\)
\(\Rightarrow a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\)
Mà \(a+b+c=3\Rightarrow a=b=c=1\)
\(\Rightarrow M=\left(1-1-1\right)^{2018}+\left(1-1-1\right)^{2019}+\left(1-1-1\right)^{2020}=1-1+1=1\)
Vậy \(M=1\)
a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)(1)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)nên:
(1) xảy ra\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)
ai làm giúp em phép tính này với em làm mãi ko dc ạ
bài 5 tính nhanh
a 100 -99 +98 - 97 + 96 - 95 + ... + 4 -3 +2
b 100 -5 -5 -...-5 ( có 20 chữ số 5 )
c 99- 9 -9 - ... -9 ( có 11 chữ số 9 )
d 2011 + 2011 + 2011 + 2011 -2008 x 4
i 14968+ 9035-968-35
k 72 x 55 + 216 x 15
l 2010 x 125 + 1010 / 126 x 2010 -1010
e 1946 x 131 + 1000 / 132 x 1946 -946
g 45 x 16 -17 / 45 x 15 + 28
h 253 x 75 -161 x 37 + 253 x 25 - 161 x 63 / 100 x 47 -12 x 3,5 - 5,8 : 0,1
Tham khảo lời giải tại đây:
Câu hỏi của Nguyen ANhh - Toán lớp 8 | Học trực tuyến
đề sai ab-ac-bc=0 mới đúng
quên ab+bc-ac mới đúng