K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 7 2020

Tham khảo lời giải tại đây:

Câu hỏi của Nguyen ANhh - Toán lớp 8 | Học trực tuyến

AH
Akai Haruma
Giáo viên
17 tháng 7 2020

Lời giải:

\(a^3+b^3=c^3+d^3\)

$\Leftrightarrow (a+b)^3-3ab(a+b)=(c+d)^3-3cd(c+d)$

Mà $a+b=c+d$ nên $ab(a+b)=cd(c+d)$

Đến đây ta xét 2TH:

TH $a+b=c+d=0$ thì $a^{2019}+b^{2019}=c^{2019}+d^{2019}=0$ (đpcm)

TH $a+b=c+d\neq 0$ thì $ab=cd\Leftrightarrow \frac{a}{d}=\frac{c}{b}$

Đặt $\frac{a}{d}=\frac{c}{b}=t\Rightarrow a=dt; c=bt$

Khi đó:

$a+b=c+d$

$\Leftrightarrow dt+b=bt+d\Leftrightarrow (t-1)(d-b)=0$

Nếu $t-1=0\Rightarrow a=d; c=b$

$\Rightarrow a^{2019}=d^{2019}; b^{2019}=c^{2019}$

$\Rightarrow a^{2019}+b^{2019}=c^{2019}+d^{2019}$ (đpcm)

Nếu $d-b=0\Leftrightarrow b=d\Rightarrow a=c$

$\Rightarrow a^{2019}+b^{2019}=c^{2019}+d^{2019}$ (đpcm)

Vậy..........

24 tháng 12 2019

Ta có \(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+3a^2b+3ab^2+c^3-3abc-3a^2b-3ab^2=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ac\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)=0\)
\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\right]=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
\(\Rightarrow M=\frac{a^{2019}}{b^{2019}}+\frac{b^{2019}}{c^{2019}}+\frac{c^{2019}}{a^{2019}}=\frac{a^{2019}}{a^{2019}}+\frac{b^{2019}}{b^{2019}}+\frac{c^{2019}}{c^{2019}}=1+1+1=3\)

6 tháng 12 2018

\(2x^2+y^2+z^2-2xy-2x+1=0\)

\(\Rightarrow\left(x^2+y^2-2xy\right)+\left(x^2-2x+1\right)+z^2=0\)

\(\Rightarrow\left(x-y\right)^2+\left(x-1\right)^2+z^2=0\)

\(\Leftrightarrow x=y=1;=0\)

\(A=x^{2018}+y^{2019}+z^{2020}=1+1+0=2\)

2)

\(a+b+c=6\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=36\)

\(\Leftrightarrow12+2\left(ab+bc+ac\right)=36\Leftrightarrow ab+bc+ac=12\)

Kết hợp với \(a^2+b^2+c^2=12\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(b-c\right)^2+\dfrac{1}{2}\left(c-a\right)^2=0\Leftrightarrow a=b=c\)

Kết hợp với \(a+b+c=6\Leftrightarrow a=b=c=2\)

\(P=\left(a-3\right)^{2019}+\left(b-3\right)^{2019}+\left(c-3\right)^{2019}=\left(-1\right)^{2019}+\left(-1\right)^{2019}+\left(-1\right)^{2019}=-3\)

23 tháng 3 2019

đề sai ab-ac-bc=0 mới đúng

23 tháng 3 2019

quên ab+bc-ac mới đúng

AH
Akai Haruma
Giáo viên
31 tháng 10 2018

Lời giải:

\(a^3+b^3=3ab-1\)

\(\Leftrightarrow a^3+b^3-3ab+1=0\)

\(\Leftrightarrow (a+b)^3-3ab(a+b)-3ab+1=0\)

\(\Leftrightarrow (a+b)^3+1-3ab(a+b+1)=0\)

\(\Leftrightarrow (a+b+1)[(a+b)^2-(a+b)+1]-3ab(a+b+1)=0\)

\(\Leftrightarrow (a+b+1)(a^2+b^2+1-ab-a-b)=0\)

Vì $a,b>0$ nên $a+b+1\neq 0$

Do đó:

\(a^2+b^2+1-a-b-ab=0\)

\(\Leftrightarrow \frac{(a-b)^2+(a-1)^2+(b-1)^2}{2}=0\)

\(\Rightarrow a=b=1\)

Do đó: \(a^{2018}+b^{2019}=1+1=2\)

Ta có đpcm.

4 tháng 12 2022

em chưa hiểu tại sao dòng thứ 3 lại ra vậy ạ