Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn sai ở đây:
vn = 4vHe + 3vX = 7 vX
Do He và X không cùng một hướng nên bạn không thể cộng đại số với nhau đc, mà phải tổng hợp véc tơ.
Mình hướng dẫn cách này rất đơn giản.
+ Tính năng lượng tỏa ra: \(W_{tỏa}=(m_{trước}-m_{sau})c^2\)
+ Mà \(W_{tỏa}=K_{He}+K_X-K_N\)
Suy ra: \(K_{He}+K_X\)
\(\dfrac{K_{He}}{K_X}=\dfrac{m_{He}}{m_X}=\dfrac{4}{3}\)
Kết hợp hai pt này bạn sẽ tìm đc \(K_X\)
\(_1^1p + _3^7 Li \rightarrow 2_2^4He\)
Nhận xét: \(m_t-m_s = m_{Li}+m_p - 2m_{He} = 0,0185u > 0\), phản ứng là tỏa năng lượng.
Sử dụng công thức: \(W_{tỏa} = (m_t-m_s)c^2 = K_s-K_t\)
=> \(0,0185.931 = 2K_{He}- K_p\) (do Li đứng yên nên KLi = 0)
=> \(K_{He} = 9,342MeV.\)
Áp dụng định luật bảo toàn động lượng
PPααpPα12
\(\overrightarrow P_{p} =\overrightarrow P_{He1} + \overrightarrow P_{He2} \)
Dựa vào hình vẽ ta có
Áp dụng định lí hàm cos trong tam giác
\(P_{He2}^2+ P_{He1}^2 +2 P_{He1}P_{He2}\cos{\alpha} = P_{P}^2\)
Mà \(P_{He1} = P_{He2}\)
=> \(1+\cos {\alpha} = \frac{P_p^2}{2P_{He}^2} = \frac{2.1.K_p}{2.2.m_{He}K_{He}} \)
=> \(\alpha \approx 168^039'.\)
áp dụng định lí hàm cos trong tam giác thì:
a gần bằng 168o39'( 168 độ, 39 phút)
nhớ là gần bằng thui nha
Pha của dòng điện so với điện áp là độ lệch pha của i đối với u mạch, nhưng nếu theo các phương án như đề bài thì mình nghĩ là tìm hệ số công suất của mạch.
Không mất tính tổng quát, ta lấy: \(U_R=3V\)
Suy ra: \(U_L=\sqrt{3}V\)
\(U_C=2\sqrt{3}V\)
\(\Rightarrow U=\sqrt{U_R^2+\left(U_L-U_C\right)^2}=2\sqrt{3}\)
Hệ số công suất: \(\cos\varphi=\frac{U_R}{U}=\frac{3}{2\sqrt{3}}=\frac{\sqrt{3}}{2}\)
\(\leftrightarrow\frac{u^2_R}{\left(\frac{8}{5}\right)^2}+\frac{u^2_L}{\left(\frac{5}{2}\right)^2}=1\)
Điều kiện :
\(\begin{cases}u_R\le\frac{8}{5}\left(V\right)\\u_L\le\frac{5}{2}\left(V\right)\end{cases}\)
\(\Rightarrow U_{\text{oR}}=\frac{8}{5}\left(V\right);U_{0L}=\frac{5}{2}\left(V\right)\)
\(\Rightarrow\frac{R}{\omega L}=\frac{8}{5}.\frac{2}{5}=\frac{16}{25}\leftrightarrow L=\frac{25R}{16L}=\frac{1}{2\pi}\left(H\right)\)
Đáp án C
\(\alpha + _7^{14}N \rightarrow p + _8^{17} O\)
\(m_t-m_s = m_{\alpha}+m_N - (m_p+m_O) = -1,281.10^{-3}u < 0\), phản ứng là thu năng lượng.
Sử dụng công thức: \(W_{thu} = (m_s-m_t)c^2 = K_t-K_s\)
=> \(1,285.10^{-3}.931 = K_{\alpha}+K_N-( K_p+K_O)\) (do N đứng yên nên KN = 0)
=> \(K_{O} = 1,5074MeV.\)
Áp dụng định luật bảo toàn động lượng
P P α p P α O
\(\overrightarrow P_{\alpha} =\overrightarrow P_{p} + \overrightarrow P_O \)
Dựa vào hình vẽ ta có
Áp dụng định lí hàm cos trong tam giác
\(P_{\alpha}^2+ P_{p}^2 -2 P_{\alpha}P_{p}\cos{\alpha} = P_{O}^2\)
=> \(\cos {\alpha} = \frac{P_{\alpha}^2+P_p^2-P_O^2}{2P_{\alpha}.P_{p}} = \frac{2m_{\alpha}K_{\alpha}+2m_pK_P-2.m_O.K_O}{2.\sqrt{2.m_{\alpha}K_{\alpha}.2.m_p.K_p}} \)
=> \(\alpha \approx 52^016'\).
Bán kính của các hạt nhân chuyển động trong từ trường có biểu thức
\(R=\frac{mv}{qB}\)
=> \(R_{\alpha}=\frac{m_{\alpha}v_0}{q_{\alpha}B}=\frac{4.v_0}{2.q_e.B}=\frac{2v_0}{q_eB}.\left(1\right)\)
\(R_p=\frac{m_pv_0}{q_pB}=\frac{1.v_0}{q_e.B}=\frac{v_0}{q_eB}.\left(2\right)\)
\(R_T=\frac{m_Tv_0}{q_TB}=\frac{3.v_0}{q_e.B}=\frac{3v_0}{q_eB}.\left(3\right)\)
trong đó q là điện tích của hạt nhân = Z.q(e)
m là khối lượng hạt nhân = A(u)
Như vậy \(R_T>R_{\alpha}>R_T\)