Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(i_1=3,5/7=0,5mm\)
\(i_2=7,2/8=0,9mm\)
Vân sáng: \(i=\dfrac{\lambda D}{a}\)
Suy ra: \(\dfrac{i_1}{i_2}=\dfrac{\lambda_1}{\lambda_2}\Rightarrow \lambda_2=\lambda_1.\dfrac{i_2}{i_1}=420.\dfrac{0,9}{0,5}=756nm\)
Năng lượng của electron ở trạng thái dừng n là \(E_n = -\frac{13,6}{n^2}.(eV)\)
\(hf_1 =\frac{hc}{\lambda_1}= E_3-E_1.(1) \)
\(hf_2 =\frac{hc}{\lambda_2}= E_5-E_2.(2) \)
Chia hai phương trình (1) và (2): \(\frac{\lambda_2}{\lambda_1}= \frac{E_3-E_1}{E_5-E_2}.(3)\)
Mặt khác: \(E_3-E_1 = 13,6.(1-\frac{1}{9}).\)
\(E_5-E_2 = 13,6.(\frac{1}{4}-\frac{1}{25}).\)
Thay vào (3) => \(\frac{\lambda_2}{\lambda_1}= \frac{800}{189}\) hay \(189 \lambda_2 = 800 \lambda_1.\)
Năng lượng của điện tử ở trạng thái dừng n: \(E_n =-\frac{13,6}{n^2}.(eV)\)
Hai vạch đầu tiên trong dãy Lai-man tương ứng với
vạch 1: Từ L (n = 2) về K (n = 1): \(hf_1 = E_2-E_1.(1)\)
vạch 2: Từ M (n = 3) về K (n = 1): \(hf_2 = E_3-E_1.(2)\)
Vạch đầu tiên trong dãy Ban-me ứng với
Từ M (n = 3) về L (n = 2): \(hf_{\alpha}= E_3-E_2.(3)\)
Lấy (1) trừ đi (2), so sánh với (3) ta có : \(hf_2-hf_1 = hf_{\alpha}\)=> \(f_{\alpha}=f_2-f_1. \)
Động năng cực đại của electron quang điện khi đập vào anôt là
\(W_{max}^d=W_{0max}^d+eU_{AK}\)
Khi chiếu chùm bức xạ vào kim loại thì để động năng ban đầu cực đại khi electron thoát khỏi bề mặt kim loại lớn nhất thì bước sóng của bức xạ chiếu vào sẽ tính theo bức xạ nhỏ hơn => Chọn bức xạ λ = 282,5 μm.
Động năng ban đầu cực đại của electron quang điện khi thoát khỏi bề mặt kim loại là
\(W_{0max}^d= h\frac{c}{\lambda}-A= 6,625.10^{-34}.3.10^8.(\frac{1}{282,5.10^{-9}}-\frac{1}{660.10^{-9}})= 4,02.10^{-19}J.\)
=> Động năng cực đại của electron quang điện đập vào anôt là
\(W_{max}^d=W_{0max}^d+eU_{AK}= 4,02.10^{-19}+1,6.10^{-19}.1,5 = 6,42.10^{-19}J.\)
Để tính được động năng cực đại của quang electron khi đập vào anôt thì ta cần tính động năng ban đầu cực đại của electron khi thoát khỏi bề mặt kim loại.
Động năng lớn nhất của các electron thoát khỏi bề mặt kim loại là
\(\frac{hc}{\lambda}= A+W_{0max}^d\)
=> \(W_{0max}^d =\frac{hc}{\lambda}- A=6,625.10^{-34}.3.10^{-8}.(\frac{1}{330.10^{-9}}-\frac{1}{660.10^{-9}} )= 3,01.10^{-19}J. \)
Động năng cực đại của các quang electron khi đập vào anôt là
\(W_{max}^d=\frac{1}{2}v_{max}^2=W_{0max}^d+eU_{AK} = 3,01.10^{-19}+1,6.10^{-19}.1,5= 5,41.10^{-19}J.\)
\(i_1 = \frac{\lambda_1 D}{a}\\ i_2 = \frac{\lambda_2 D}{a}\)=> \( \frac{i_1}{i_2}= \frac{\lambda _1}{\lambda_2}= \frac{540}{600}=0,9.\)
=> \(i_2 = \frac{i_1}{0,9}=0,4 mm.\)