K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 1 2021

Không mất tính tổng quát, giả sử \(A< B< C\Rightarrow\left\{{}\begin{matrix}B=A.q=2A\\C=A.q^2=4A\end{matrix}\right.\)

\(A+B+C=180^0\Rightarrow A+2A+4A=180^0\)

\(\Rightarrow7A=180^0\Rightarrow\left\{{}\begin{matrix}A=\dfrac{180^0}{7}\\B=\dfrac{360^0}{7}\\C=\dfrac{720^0}{7}\end{matrix}\right.\)

Thế vào bấm máy biểu thức M. Nhưng tại sao người ta cho xấu vậy nhỉ?

22 tháng 3 2016

Xét các vec tơ đơn vị \(\frac{\overrightarrow{AB}}{AB};\frac{\overrightarrow{BC}}{BC};\frac{\overrightarrow{CA}}{CA}\) trên các cạnh AB, BC, CA của tam giác ABC

Có \(0\le\left(\frac{\overrightarrow{AB}}{AB};\frac{\overrightarrow{BC}}{BC};\frac{\overrightarrow{CA}}{CA}\right)^2=3-2\left(\cos A+\cos B+\cos C\right)\)

Suy ra \(\cos A+\cos B+\cos C\le\frac{3}{2}\) => Điều cần chứng minh

15 tháng 8 2019
https://i.imgur.com/Ca7RZxn.jpg
27 tháng 9 2019

\(sin^2a-sina.cosa+cos^2a\)

\(\Leftrightarrow tan^2a-tana+1\)

Thay tana = 1/2

\(\left(\frac{1}{2}\right)^2-\frac{1}{2}+1=\frac{3}{4}\)

21 tháng 9 2023

a) \(cos\left(A+B\right)+cosC=0\)

\(\Leftrightarrow cos\left(\pi-C\right)+cosC=0\)

\(\Leftrightarrow-cosC+cosC=0\)

\(\Leftrightarrow0=0\left(đúng\right)\)

\(\Leftrightarrow dpcm\)

b) \(cos\left(\dfrac{A+B}{2}\right)=sin\dfrac{C}{2}\)

\(\Leftrightarrow cos\left(\dfrac{\pi-C}{2}\right)=sin\dfrac{C}{2}\)

\(\Leftrightarrow cos\left(\dfrac{\pi}{2}-\dfrac{C}{2}\right)=sin\dfrac{C}{2}\)

\(\Leftrightarrow sin\dfrac{C}{2}=sin\dfrac{C}{2}\left(đúng\right)\)

\(\Leftrightarrow dpcm\)

c) \(cos\left(A-B\right)+cos\left(2B+C\right)=0\left(1\right)\)

Ta có : \(A+B+C=\pi\)

\(\Leftrightarrow2B+C=\pi-A+B\)

\(\Leftrightarrow2B+C=\pi-\left(A-B\right)\)

\(\left(1\right)\Leftrightarrow cos\left(A-B\right)+cos\left[\pi-\left(A-B\right)\right]=0\)

\(\Leftrightarrow cos\left(A-B\right)-cos\left(A-B\right)=0\)

\(\Leftrightarrow0=0\left(đúng\right)\)

\(\Leftrightarrow dpcm\)

24 tháng 5 2017

Theo giả thiết ta có 3 góc: \(\alpha;\beta=\alpha+\dfrac{\pi}{3};\gamma=\alpha+\dfrac{2\pi}{3}\).
Ta có:
\(tan\alpha.tan\left(\alpha+\dfrac{\pi}{3}\right)+tan\left(\alpha+\dfrac{\pi}{3}\right).tan\left(\alpha+\dfrac{2\pi}{3}\right)+\)\(tan\left(\alpha+\dfrac{2\pi}{3}\right).tan\alpha\)
\(=tan\alpha\left[tan\left(\alpha+\dfrac{\pi}{3}\right)+tan\left(\alpha+\dfrac{2\pi}{3}\right)\right]\)\(+tan\left(a+\dfrac{\pi}{3}\right)tan\left(\alpha+\dfrac{2\pi}{3}\right)\)
\(=tan\alpha\dfrac{sin\left(2\alpha+\pi\right)}{cos\left(\alpha+\dfrac{\pi}{3}\right)cos\left(\alpha+\dfrac{2\pi}{3}\right)}\)\(+\dfrac{sin\left(\alpha+\dfrac{\pi}{3}\right)sin\left(\alpha+\dfrac{2\pi}{3}\right)}{cos\left(\alpha+\dfrac{\pi}{3}\right)cos\left(\alpha+\dfrac{2\pi}{3}\right)}\)
\(=tan\alpha\dfrac{-sin2\alpha}{cos\left(\alpha+\dfrac{\pi}{3}\right)cos\left(\alpha+\dfrac{2\pi}{3}\right)}\)\(+\dfrac{cos\dfrac{\pi}{3}-cos\left(2\alpha+\pi\right)}{2cos\left(\alpha+\dfrac{\pi}{3}\right)cos\left(\alpha+\dfrac{2\pi}{3}\right)}\)
\(=\dfrac{-2sin^2\alpha}{cos\left(\alpha+\dfrac{\pi}{3}\right)cos\left(\alpha+\dfrac{2\pi}{3}\right)}\)\(+\dfrac{\dfrac{1}{2}+cos2\alpha}{2cos\left(\alpha+\dfrac{\pi}{3}\right)cos\left(\alpha+\dfrac{2\pi}{3}\right)}\)
\(=\dfrac{\dfrac{1}{2}-4sin^2\alpha+cos2\alpha}{2cos\left(\alpha+\dfrac{\pi}{3}\right)cos\left(\alpha+\dfrac{2\pi}{3}\right)}\)
\(=\dfrac{\dfrac{1}{2}-4\left(1-cos^2\alpha\right)+2cos^2\alpha-1}{cos\dfrac{\pi}{3}+cos\left(2\alpha+\pi\right)}\)
\(=\dfrac{6cos^2\alpha-\dfrac{9}{2}}{\dfrac{1}{2}-cos2\alpha}\)
\(=\dfrac{3\left(2cos^2\alpha-\dfrac{3}{2}\right)}{\dfrac{1}{2}-\left(2cos^2\alpha-1\right)}=\dfrac{3\left(2cos^2\alpha-\dfrac{3}{2}\right)}{\dfrac{3}{2}-2cos^2\alpha}=-3\).

24 tháng 5 2017

\(4cos\alpha.cos\beta cos\gamma=4cos\alpha cos\left(\alpha+\dfrac{\pi}{3}\right)cos\left(\alpha+\dfrac{2\pi}{3}\right)\)
\(=4cos\alpha.\dfrac{1}{2}\left(cos\dfrac{\pi}{3}+cos\left(2\alpha+\pi\right)\right)\)
\(=4cos\alpha.\dfrac{1}{2}\left(\dfrac{1}{2}-cos2\alpha\right)\)
\(=cos\alpha-2cos\alpha.cos2\alpha\)
\(=cos\alpha-\left(cos\alpha+cos3\alpha\right)\)
\(=-cos3\alpha\)
\(=cos\left(\pi+3\alpha\right)\)
\(=cos3\left(\dfrac{\pi}{3}+\alpha\right)\)
\(=cos3\beta\) (đpcm).