Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(a^3+b^3+ab=\left(a+b\right)^3-3ab\left(a+b\right)+ab=1^3-3ab+ab=1-2ab\)
\(a+b\ge2\sqrt{ab}\Rightarrow1\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le\frac{1}{2}\Rightarrow ab\le\frac{1}{4}\)
\(\Rightarrow-ab\ge\frac{-1}{4}\Rightarrow-2ab\ge-\frac{1}{2}\Rightarrow1-2ab\ge\frac{1}{2}\)
\(\Rightarrow a^3+b^3+ab\ge\frac{1}{2}\left(đpcm\right)\)
\(sigma\frac{a^2+b^2}{ab\left(a+b\right)^3}\ge sigma\frac{\frac{\left(a+b\right)^2}{2}}{\left(a+b\right)^2\left(a^3+b^3\right)}=sigma\frac{1}{2\left(a^3+b^3\right)}\ge\frac{9}{4\left(a^3+b^3+c^3\right)}=\frac{9}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt[3]{3}}\)
Bài 1:
Xét A= \(a^2+b^2+c^2-ab-ac-bc\)
\(2A=2a^2+2b^2+2c^2-2ab-2ac-2bc\\ =\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\\ =\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\\ \Rightarrow A\ge0\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
Bài 2:
Xét \(A=a^2+b^2+c^2+\frac{3}{4}-a-b-c\)
\(\Rightarrow A=\left(a^2-a+\frac{1}{4}\right)+\left(b^2-b+\frac{1}{4}\right)+\left(c^2-c+\frac{1}{4}\right)\\ =\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2\ge0\forall a,b,c\\ \Rightarrow a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)
1 ) Đề bài > not \(\ge\)
Giả sử đpcm là đúng , khi đó , ta có :
\(x^2+y^2+8>xy+2x+2y\)
\(\Leftrightarrow2x^2+2y^2+16>2xy+4x+4y\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-4x+4\right)+\left(y^2-4y+4\right)+8>0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2+8>0\left(1\right)\)
Do \(\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2+8\ge8>0\forall x;y\left(2\right)\)
Từ ( 1 ) ; ( 2 ) => Điều giả sử là đúng => đpcm
2 ) ĐK : a ; b ; c không âm
Áp dụng BĐT phụ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) ( cái này bạn áp dụng BĐT Cô - si để c/m ) , ta có :
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{9}{a+b+b+c+c+a}=\frac{9}{6.2}=\frac{3}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=2\)
3 ) Áp dụng BĐT Cô - si cho các cặp số không âm , ta có :
\(x^2+y^2\ge2xy;y^2+z^2\ge2yz;x^2+z^2\ge2xz\)
\(\Rightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\left(1\right)\)
\(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)
\(\Rightarrow x^2+y^2+z^2+3\ge2x+2y+2z\left(2\right)\)
Từ ( 1 ) ; ( 2 ) , ta có : \(2x^2+2y^2+2z^2+x^2+y^2+z^2+3\ge2xy+2yz+2xz+2x+2y+2z\)
\(\Rightarrow3\left(x^2+y^2+z^2+1\right)\ge2\left(x+y+z+2xy+2xz+2yz\right)=2.6=12\)
\(\Rightarrow x^2+y^2+z^2+1\ge4\)
\(\Rightarrow x^2+y^2+z^2\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=z=1\)
\(b^2.\dfrac{\left(1+ab\right)^2}{\left(a+b\right)^2}\) or \(b^2+\dfrac{\left(1+ab\right)^2}{\left(a+b\right)^2}\)???
Ta có a + b = 1 nên \(a^3+b^3+ab=\left(a+b\right)\left(a^2-ab+b^2\right)+ab=a^2+b^2\)
Lại có \(a^2+b^2=a^2+\left(1-a\right)^2=2a^2-2a+1\)
\(2\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Vậy nên \(a^3+b^3+ab\ge\frac{1}{2}\)
Dấu bằng xảy ra khi \(a=b=\frac{1}{2}\)
Ta có:
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
\(\Leftrightarrow\left(a^2-ab+b^2\right)+ab\ge\frac{1}{2}\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)+ab\ge\frac{1}{2}\)
\(\Leftrightarrow a^3+b^3+ab\ge\frac{1}{2}\)
Dấu = xảy ra khi \(a=b=\frac{1}{2}\)