Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi I là trung điểm của AB, ta có: OI = OA – IA
b, Ta chứng minh được IC//BD//OE
Mà OB = BI = IA => AC = CD = DE
a) Gọi I, K lần lượt là trung điểm của AE và BC.
Ta có : \(EB^2=\left(BK-EK\right)^2;EC^2=\left(KC+EK\right)^2\)
\(\Rightarrow EB^2+EC^2=2\left(BK^2+EK^2\right)=2\left(BO^2-OK^2+OE^2-OK^2\right)\)
\(=2\left(R^2+r^2\right)-4OK^2\)
\(AE^2=4AI^2=4\left(r^2-OI^2\right)\)
\(\Rightarrow EB^2+EC^2+EA^2=2R^2+6r^2-4\left(OI^2+OK^2\right)\)
Mà OIEK là hình chữ nhật nên \(OI^2+OK^2=OE^2=r^2\)
\(\Rightarrow EB^2+EC^2+EA^2=2R^2+2r^2\) không đổi.
b) Giả sử EO giao với AK tại J.
Vì IOEK là hình chữ nhật nên OK song song và bằng EI. Vậy nên OK song song và bằng một nửa AE.
Do đó \(\frac{JE}{JO}=\frac{AJ}{JK}=\frac{AE}{OK}=2\)
Vì OE cố định nên J cố định; Vì AK là trung tuyến của tam giác ABC nên J là trọng tâm tam giác ABC
Suy ra J thuộc MC.
Vậy MC đi qua J cố định.
c) Vì AK = 3/2AJ nên H trùng K.
Do đó OH vuông góc BC. Suy ra H thuộc đường tròn đường kính OE.
A B E C D F F'
a/ Vì E là giao điểm của 2 tiếp tuyến của đường tròn (O;r) nên EF = EF' (1)
Dễ dàng chứng minh được \(\Delta OAF=\Delta OF'C\left(\text{2 cạnh góc vuông}\right)\)
=> AF = CF' (2)
Cộng (1) và (2) theo vế được ĐPCM
b/ Từ AF = 2CF' suy ra được AB = CD
ta chứng minh được AE = EC
kết hợp hai điều trên suy ra được tam giác ABD là tam giác cân có
OE là tia phân giác (E là giao điểm hai tiếp tuyến cắt nhau)
Suy ra đpcm
c/ Ta có AB = BE , AF = FB
=> \(OE=\sqrt{OF^2+EF^2}=\sqrt{r^2+\left(3AF\right)^2}=\sqrt{r^2+9.\left(R^2-r^2\right)}\)
\(\sqrt{9R^2-8r^2}\) không đổi. Mà O cố định nên E thuộc \(\left(O;\sqrt{9R^2-8r^2}\right)\)