Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(OA=AB=BC\left(gt\right)\Rightarrow CA=\frac{2}{3}CO\)
Tam giác MHC có: CO là đường trung tuyến và \(A\in CO,CA=\frac{2}{3}CO\left(cmt\right)\)
\(\Rightarrow A\) là trọng tâm của \(\Delta MHC\) nên đường trung tuyến HI đi qua điểm A.
b, BI là đường trung bình của \(\Delta AMC\left(gt\right)\Rightarrow BI//AM\)
AM là đường trung bình của \(\Delta OBN\left(gt\right)\Rightarrow AM//BN\)
Qua điểm B nằm ngoài đường thẳng AM, ta có: \(BI//AM,BN//AM\left(cmt\right)\) nên theo tiên đề Ơclít,
3 điểm B,N,I thẳng hàng.
Chúc bạn học tốt.
Gọi I là tr5ung điểm của MC,CO và EI cắt nhau tại A'. Suy ra A' là trọng tâm của tam giác EMC
Ta có: \(CA'=\frac{2}{3}CO\)Mà \(CA=\frac{2}{3}CO\)
\(\Rightarrow A'\equiv A\)nên AE đi qua I
Tam giác OBN có:
OA = OB ( gt ) và OM = MN ( gt )
\(\Rightarrow AM//BN\)
Ta giác AMC có:
AB = BC ( gt ) và CI = IM ( gt )
\(\Rightarrow AM//BI\)
Áp dụng tiên đề Ơclit ta có \(BN\equiv BI\)
Suy ra 3 đường thẳng AE, BN, CM đồng quy.
Vậy 3 đường thẳng AE, BN, CM đồng quy. ( đpcm )
x x' y y' O E M N A B C I
BN là nét đứt nhé.
Gọi I là giao điểm của AE và CM.
ΔECM có CO là đường trung tuyến (vì O là trung điểm EM)
mà A ∈ CO, CA = 2/3 CO
=> A là trọng tâm của ΔECM
=> EI là đường trung tuyến của ΔECM
=> I là trung điểm của CM.
Xét ΔOBN có A là trung điểm OB, M là trung điểm ON
=> AM là đường trung bình của ΔOBN => AM // BN (1)
Xét ΔCAM có B là trung điểm AC, I là trung điểm CM
=> BI là đường trung bình của ΔCAM => BI // AM (2)
Từ (1)(2) => BI \(\equiv\) BN => I ∈ BN
Mà I là giao điểm CM và AE
=> BN, CM, AE đồng quy (đpcm)
a: Xét ΔOAH và ΔOBH có
AO=BO
OH chung
AH=BH
=>ΔOHA=ΔOHB
b: ΔOHA=ΔOHB
=>góc OHA=góc OHB=180/2=90 độ
=>OH vuông góc AB
c: Xét ΔOAC và ΔOBC có
OA=OB
góc AOC=góc BOC
OC chung
=>ΔOAC=ΔOBC