Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
a) -△DBE và △ACE có: \(\widehat{BDE}=\widehat{CAE};\widehat{BEC}\) là góc chung.
\(\Rightarrow\)△DBE∼△ACE (g-g).
b) △DBE∼△ACE \(\Rightarrow\dfrac{EB}{EC}=\dfrac{ED}{EA}\Rightarrow\dfrac{EB}{ED}=\dfrac{EC}{EA}\)
-△EAD và △ECB có: \(\dfrac{EB}{ED}=\dfrac{EC}{EA};\widehat{BEC}\) là góc chung.
\(\Rightarrow\)△EAD∼△ECB (c-g-c) nên \(\widehat{EAD}=\widehat{ECB}\)
c) EM cắt BC tại F.
-△BCE có: 2 đường cao BD và CA cắt nhau tại M.
\(\Rightarrow\)M là trực tâm của △BCE.
\(\Rightarrow\)EM⊥BC tại F.
-△BMF và △BCD có: \(\widehat{DBC}\) là góc chung, \(\widehat{BFM}=\widehat{BDC}=90^0\).
\(\Rightarrow\)△BMF∼△BCD (g-g).
\(\Rightarrow\dfrac{BM}{BC}=\dfrac{BF}{BD}\Rightarrow BM.BD=BC.BF\left(1\right)\)
-△CMF và △CBA có: \(\widehat{CFM}=\widehat{CAB}=90^0,\widehat{CBA}\) là góc chung.
\(\Rightarrow\)△CMF∼△CBA (g-g).
\(\Rightarrow\dfrac{CM}{CB}=\dfrac{CF}{CA}\Rightarrow CM.CA=CB.CF\left(2\right)\)
-Từ (1) và (2) suy ra:
\(BM.BD+CM.CA=BC.BF+CB.CF=BC\left(BF+CF\right)=BC.BC=BC^2\)
không đổi.
a: Ta có: H và D đối xứng với nhau qua AB
nên AH=AD; BH=BD
=>ΔHAD cân tại A
=>AB là phân giác của góc HAD(1)
Ta có H và E đối xứngvới nhau qua AC
nên AH=AE; CH=CE
=>ΔAHE cân tại A
=>AC là phân giác của góc HAE(2)
Từ (1) và (2) suy ra góc DAE=2xgóc BAC=180 độ
=>D,A,E thẳng hàng
b: Xét ΔAHB và ΔADB có
AH=AD
BH=BD
AB chung
Do đó: ΔAHB=ΔADB
Suy ra: góc ADB=90 độ
=>BD vuông góc với DE(3)
Xét ΔAHC và ΔAEC có
AH=AE
HC=EC
AC chung
Do đó: ΔAHC=ΔAEC
Suy ra: góc AEC=90 độ
=>CE vuông góc với ED(4)
Từ (3) và (4) suy ra BDEC là hình thang vuông
c: ED=AE+AD
=AH+AH=2AH
d: Xét ΔDHE có
HA là đường trung tuyến
HA=DE/2
Do đó: ΔDHE vuông tại H
a: Xét ΔOAH và ΔOBH có
AO=BO
OH chung
AH=BH
=>ΔOHA=ΔOHB
b: ΔOHA=ΔOHB
=>góc OHA=góc OHB=180/2=90 độ
=>OH vuông góc AB
c: Xét ΔOAC và ΔOBC có
OA=OB
góc AOC=góc BOC
OC chung
=>ΔOAC=ΔOBC