K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 

Giả sử M(x;y;z)M(x;y;z) thỏa mãn MA=kMBMA→=kMB→ với k1k≠1.
Ta có MA=(x1x;y1y;z1z),MB=(x2x;y2y;z2z)MA→=(x1–x;y1–y;z1–z),MB→=(x2–x;y2–y;z2–z)

 

MA=kMBx1x=k(x2x)y1y=k(y2y)z1z=k(z2z)⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪x=x1kx21ky=y1ky21kz=z1kz21kMA→=kMB→⇔{x1–x=k(x2–x)y1–y=k(y2–y)z1–z=k(z2–z)⇔{x=x1–kx21–ky=y1–ky21–kz=z1–kz21–k

11 tháng 6 2019

mấy bạn ơi hộ mình đi !!!

AH
Akai Haruma
Giáo viên
16 tháng 10 2020

Lời giải:

TXĐ: $x\neq -1$

Bài toán tương đương với chứng minh PT $2x+\frac{x^2-x+1}{x+1}=3$ có 2 nghiệm phân biệt.

Ta có:

$2x+\frac{x^2-x+1}{x+1}=3$

$\Rightarrow 2x^2+2x+x^2-x+1=3x+3$

$\Leftrightarrow 3x^2-2x-2=0$

Dễ thấy $3.(-1)^2-2(-1)-2\neq 0$ và $\Delta'=1+6=7>0$ nên PT $2x+\frac{x^2-x+1}{x+1}=3$ có 2 nghiệm pb khác $-1$

Ta có đpcm.

13 tháng 6 2019

#)Giải :

Lấy điểm C tùy ý trên mặt phẳng chứa n điểm, ta có :

\(\overrightarrow{CB_1}+\overrightarrow{CB_2}+...+\overrightarrow{CB_n}=\overrightarrow{CA_1}+\overrightarrow{CA_2}+...+\overrightarrow{CA_n}\)

\(\Rightarrow\left(\overrightarrow{CB_1}-\overrightarrow{CA_1}\right)+\left(\overrightarrow{CB_2}-\overrightarrow{CA_2}\right)+...+\left(\overrightarrow{CB_n}-\overrightarrow{CA_n}\right)=\overrightarrow{0}\)

\(\Rightarrow\overrightarrow{A_1B_1}+\overrightarrow{A_2B_2}+...+\overrightarrow{A_nB_n}=\overrightarrow{0}\left(đpcm\right)\)

13 tháng 6 2019

²⁴ʱŤ.Ƥεɳɠʉїɳş༉ ( Team TST 14 ) :    cái đoạn thứ 3 bỏ ngoặc với \(\overrightarrow{0}\) đi nhé !

Thay vào chỗ \(\overrightarrow{0}\)là : 

\(=\left(\overrightarrow{CB_1}+\overrightarrow{CB_2}+...+\overrightarrow{CB_n}\right)-\left(\overrightarrow{CA_1}+\overrightarrow{CA_2}+...+\overrightarrow{CA_n}\right)\)

Vì n điểm \(B_1,B_2,....,B_n\)cũng là n điểm \(A_1,A_2,...,A_n\)nhưng được kí hiệu 1 cách khác nên ta có:

\(\overrightarrow{CB_1}+\overrightarrow{CB_2}+...+\overrightarrow{CB_n}=\overrightarrow{CA_1}+\overrightarrow{CA_2}+...+\overrightarrow{CA_n}\)

=> đpcm

ý kiến riêng của tớ =))

Câu 1 1. Cho parabol (P): y=\(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2\). Giả sử (P) cắt Ox tại 2 điểm có hoành độ x1 , x2 thỏa mãn điều kiện x1+x2 \(\le\) 4. Tìm GTLN và GTNN của biểu thức sau: P = \(x^{_13}+x^{_23}+x_1x_2\left(3x_1+3x_2+8\right)\) 2. Giải phương trình: \(\sqrt{x^4-x^2+4}+\sqrt{x^4+20x^2+4}=7x\) Câu 2: 1. Cho parabol (P): \(y=x^2-2mx+m^2-2m+4\). Tìm tất cả các giá trị thực của m để (P) cắt Ox tại 2 điểm...
Đọc tiếp

Câu 1

1. Cho parabol (P): y=\(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2\). Giả sử (P) cắt Ox tại 2 điểm có hoành độ x1 , x2 thỏa mãn điều kiện x1+x2 \(\le\) 4. Tìm GTLN và GTNN của biểu thức sau: P = \(x^{_13}+x^{_23}+x_1x_2\left(3x_1+3x_2+8\right)\)

2. Giải phương trình: \(\sqrt{x^4-x^2+4}+\sqrt{x^4+20x^2+4}=7x\)

Câu 2:

1. Cho parabol (P): \(y=x^2-2mx+m^2-2m+4\). Tìm tất cả các giá trị thực của m để (P) cắt Ox tại 2 điểm có hoành độ không âm x1, x2. Tính theo m giá trị của biểu thức \(P=\sqrt{x_1}+\sqrt{x_2}\) và tìm giá trị nhỏ nhất của P.

2. Giải bất phương trình: \(\frac{3-2\sqrt{x^2+3x+2}}{1-2\sqrt{x^2-x+1}}>1\)

Câu 3:

1. Cho hàm số \(y=f\left(x\right)=mx^2-2\left(m-1\right)x+m-2\). Tìm m để trên đồ thị của \(f\left(x\right)\)có 2 điểm \(A\left(x_A;y_A\right),B\left(x_B,y_B\right)\)thỏa mãn: \(2x_A-y_A-3=0,2x_B-y_B-3=0\)\(AB=\sqrt{5}\)

2. Giải phương trình: \(x\sqrt{x}-1=\left(\sqrt{x}-1\right).\sqrt{2x^2-3x+2}\)

Câu 4:

1. Cho parabol (P): \(y=x^2-\left(m-1\right)x+\left(2m^2-8m+6\right)\). Giả sử (P) cắt Ox tại 2 điểm có hoành độ \(x_1,x_2\). Tìm GTLN và GTNN của biểu thức \(P=\left|x_1x_2-2\left(x_1+x_2\right)\right|\)

2. Giải bất phương trình: \(\left(2x-5-\sqrt{x^2-x-25}\right)\sqrt{x^2-5x+6}\le0\)

Câu 5:

1. Cho parabol (P): \(y=-x^2\) và đường thẳng d đi qua điểm I (0; -1). và có hệ số góc là k. Gọi A và B là các giao điểm của (P) và d. Giả sử A, B lần lượt có hoành độ là \(x_1,x_2\)

a. Tìm k để trung điểm của đoạn AB nằm trên trục tung.

b. Tìm GTNN của biểu thức: \(P=\left|x^3_1-x^3_2\right|\)

2. Giải phương trình: \(1+\left(6x+2\right)\sqrt{2x^2-1}=2\left(5x^2+4x\right)\)

0
21 tháng 5 2016

\(\begin{cases}x-my=2-4m\\mx+y=3m+1\end{cases}\)=>\(\begin{cases}mx-m^2y=2m-4m^2\left(1\right)\\mx+y=3m+1\left(2\right)\end{cases}\)

lấy (2)-(1) ta được

=>\(\begin{cases}y.\left(1+m^2\right)=1+m+4m^2\left(3\right)\\mx+y=3m+1\end{cases}\)

để hệ phương trình có nghiệm khi phương trình (3) có nghiệm

mà ta có 1+\(m^2\) \(\ne\)0 với mọi m nên hệ trên luôn có nghiệm với mọi m

 

10 tháng 11 2016

1/ Tinh ∆. Pt co 2 nghiem x1,x2 <=> ∆>=0.
Theo dinh ly Viet: S=x1+x2=-b/a=m+3.
Theo gt: |x1|=|x2| <=> ...

2/ \(\frac{\sin^2x-\cos^2x}{1+2\sin x.\cos x}\)

\(=\frac{\cos^2x\left(\frac{\sin^2x}{\cos^2x}-\frac{\cos^2x}{\cos^2x}\right)}{\cos^2x\left(\frac{1}{\cos^2x}+\frac{2\sin x.\cos x}{\cos^2x}\right)}\)

\(=\frac{\tan^2x-1}{\tan^2x+1+2\tan x}\)

\(=\frac{\left(\tan x-1\right)\left(\tan x+1\right)}{\left(\tan x+1\right)^2}\)

\(=\frac{\tan x-1}{\tan x+1}\left(dpcm\right)\)

c/ A M C B N BC=8 AC=7 AB=6

  • Ta có: \(\overrightarrow{BA}^2=\left(\overrightarrow{CA}-\overrightarrow{CB}\right)^2\)

\(\Leftrightarrow BA^2=CA^2-2\overrightarrow{CA}.\overrightarrow{CB}+CB^2\)

\(\Leftrightarrow\overrightarrow{CA}.\overrightarrow{CB}=\frac{CA^2+CB^2-BA^2}{2}=\frac{77}{2}\)

  • \(\overrightarrow{MN}^2=\left(\overrightarrow{CN}-\overrightarrow{CM}\right)^2=\left(\frac{3}{2}\overrightarrow{CB}-\frac{5}{7}\overrightarrow{CA}\right)^2\)

\(\Leftrightarrow MN^2=\frac{9}{4}CB^2-\frac{15}{7}\overrightarrow{CA}.\overrightarrow{CB}+\frac{25}{49}CA^2\)

\(=\frac{9}{4}.64-\frac{15}{7}.\frac{77}{2}+\frac{25}{49}.49\)

\(=\frac{173}{2}\)

\(\Rightarrow MN=\sqrt{\frac{173}{2}}=\frac{\sqrt{346}}{2}\)