Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{MC}=\left(1-k\right)\overrightarrow{MA}+k\overrightarrow{MB}\)
\(\Leftrightarrow\overrightarrow{MC}-\overrightarrow{MA}=k\left(\overrightarrow{MB}-\overrightarrow{MA}\right)\)
\(\Leftrightarrow\overrightarrow{AC}=k\overrightarrow{AB}\)
\(\Rightarrow\)A,B,C thẳng hàng (đpcm)
a) Ta có vectơ \(\overrightarrow {OM} \) biểu diễn theo hai vectơ \(\overrightarrow {OA} \) và \(\overrightarrow {OB} \) là: \(\overrightarrow {OM} = \frac{1}{2}\left( {\overrightarrow {OA} + \overrightarrow {OB} } \right)\)
b) Do tọa độ hai điểm A và B là: \(A\left( {{x_A},{y_A}} \right),B\left( {{x_B},{y_B}} \right)\) nên ta có:\(\overrightarrow {OA} = \left( {{x_A},{y_A}} \right),\overrightarrow {OB} = \left( {{x_B},{y_B}} \right)\)
Vậy \(\overrightarrow {OM} = \frac{1}{2}\left( {\overrightarrow {OA} + \overrightarrow {OB} } \right) = \frac{1}{2}\left( {{x_A} + {x_B};{y_A} + {y_B}} \right) = \left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2}} \right)\)
Tọa độ điểm M chính là tọa độ của vectơ nên tọa độ M là \(M\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2}} \right)\)
Với \(k\ne1\) và điểm O bất kì, ta có:
\(\overrightarrow{MA}=k\overrightarrow{MB}\) \(\Leftrightarrow\overrightarrow{OA}-\overrightarrow{OM}=k\left(\overrightarrow{OB}-\overrightarrow{OM}\right)\)
\(\Leftrightarrow\overrightarrow{OA}-k\overrightarrow{OB}=\left(1-k\right)\overrightarrow{OM}\)
\(\Leftrightarrow\overrightarrow{OM}=\frac{\overrightarrow{OA}-k\overrightarrow{OB}}{1-k}\) (đpcm)
a)
Cách 1:
Ta có: \(\overrightarrow {KA} + 2\overrightarrow {KB} = \overrightarrow 0 \).
\( \Leftrightarrow \overrightarrow {KA} = - 2\overrightarrow {KB} \)
Suy ra vecto \(\overrightarrow {KA} \) và vecto\(\;\overrightarrow {KB} \) cùng phương, ngược chiều và \(KA = 2.KB\)
\( \Rightarrow K,A,B\)thẳng hàng, K nằm giữa A và B thỏa mãn: \(KA = 2.KB\)
Cách 2:
Ta có: \(\overrightarrow {KA} + 2\overrightarrow {KB} = \overrightarrow 0 \).
\(\begin{array}{l} \Leftrightarrow \left( {\overrightarrow {KB} + \overrightarrow {BA} } \right) + 2\overrightarrow {KB} = \overrightarrow 0 \\ \Leftrightarrow 3.\overrightarrow {KB} + \overrightarrow {BA} = \overrightarrow 0 \\ \Leftrightarrow 3.\overrightarrow {KB} = \overrightarrow {AB} \\ \Leftrightarrow \overrightarrow {KB} = \frac{1}{3}\overrightarrow {AB} \end{array}\)
Vậy K thuộc đoạn AB sao cho \(KB = \frac{1}{3}AB\).
b)
Với O bất kì, ta có:
\(\frac{1}{3}\overrightarrow {OA} + \frac{2}{3}\overrightarrow {OB} = \frac{1}{3}\left( {\overrightarrow {OK} + \overrightarrow {KA} } \right) + \frac{2}{3}\left( {\overrightarrow {OK} + \overrightarrow {KB} } \right) = \left( {\frac{1}{3}\overrightarrow {OK} + \frac{2}{3}\overrightarrow {OK} } \right) + \left( {\frac{1}{3}\overrightarrow {KA} + \frac{2}{3}\overrightarrow {KB} } \right) = \overrightarrow {OK} + \frac{1}{3}\left( {\overrightarrow {KA} + 2\overrightarrow {KB} } \right) = \overrightarrow {OK}\)
Vì \(\overrightarrow {KA} + 2\overrightarrow {KB} = \overrightarrow 0 \)
Vậy với mọi điểm O, ta có \(\overrightarrow {OK} = \frac{1}{3}\overrightarrow {OA} + \frac{2}{3}\overrightarrow {OB} .\)
\(\left|2\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|\)
\(\Leftrightarrow4MA^2+MB^2+4\overrightarrow{MA}.\overrightarrow{MB}=MA^2+4MB^2+4\overrightarrow{MA}.\overrightarrow{MB}\)
\(\Leftrightarrow MA^2=MB^2\)
\(\Leftrightarrow MA=MB\)
Vậy tập hợp M là trung trực AB
Giả sử M(x;y;z)M(x;y;z) thỏa mãn −−→MA=k−−→MBMA→=kMB→ với k≠1k≠1.
Ta có −−→MA=(x1–x;y1–y;z1–z),−−→MB=(x2–x;y2–y;z2–z)MA→=(x1–x;y1–y;z1–z),MB→=(x2–x;y2–y;z2–z)
−−→MA=k−−→MB⇔⎧⎪⎨⎪⎩x1–x=k(x2–x)y1–y=k(y2–y)z1–z=k(z2–z)⇔⎧⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪⎩x=x1–kx21–ky=y1–ky21–kz=z1–kz21–kMA→=kMB→⇔{x1–x=k(x2–x)y1–y=k(y2–y)z1–z=k(z2–z)⇔{x=x1–kx21–ky=y1–ky21–kz=z1–kz21–k
mấy bạn ơi hộ mình đi !!!