Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cô - si cho hai số không âm ta được
\(x^2+3+\frac{1}{x^2+3}\ge2\sqrt{\left(x^2+3\right)\cdot\frac{1}{x^2+3}}=2\sqrt{1}=2\)
Dấu = xảy ra \(\Leftrightarrow x^2+3=\frac{1}{x^2+3}\)
\(\Leftrightarrow\left(x^2+3\right)^2=1\)
\(\Leftrightarrow x^4+6x^2+9=1\)
\(\Leftrightarrow x^4+6x^2+8=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)=0\) hoặc \(\left(x^2+4\right)=0\)
\(\Leftrightarrow x^2=-2\) hoặc \(x^2=-4\) (vô nghiệm) (Sai đề r hay s á b, mik nghĩ là \(x^2-3\)ms đúng)
Vậy GTNN của M là 2
này thì Cauchy cái gì bạn :v
Với x ≥ 0 thì √x + 5 ≥ 5 => 10/(√x + 5) ≤ 2 => -10/(√x + 5) ≥ -2
Dấu "=" xảy ra <=> x = 0 . Vậy MinA = -2
1:
ĐKXĐ: x>=0; x<>4
\(P=\dfrac{\sqrt{x}+\sqrt{x}-2}{x-4}\cdot\dfrac{\sqrt{x}-2}{2}\)
\(=\dfrac{2\sqrt{x}-2}{2}\cdot\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)
3: \(P-1=\dfrac{\sqrt{x}-1-\sqrt{x}-2}{\sqrt{x}+2}=\dfrac{-3}{\sqrt{x}+2}< 0\)
=>P<1
Áp dụng BĐT Cô si ta có \(x+\dfrac{4}{x}\ge2\sqrt{x.\dfrac{4}{x}}=2\sqrt{4}=4\)
Dấu = xảy ra \(\Leftrightarrow x=\dfrac{4}{x}\Leftrightarrow x^2=4\Leftrightarrow x=2\) (Vì \(1\le x\le3\))