K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

P đạt giá trị nhỏ nhất \(\Leftrightarrow\frac{1}{P}\)đạt giá trị lớn nhất.

Xét : \(\frac{2}{P}=\frac{x^2+x+1}{x}=x+\frac{1}{x}+1\). Áp dụng bđt Cauchy với hai số không âm x và 1/x được : 

\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Rightarrow\frac{2}{P}\ge3\Leftrightarrow P\le\frac{2}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge0\\x=\frac{1}{x}\end{cases}\Leftrightarrow}x=1\)

Vậy Min P = 2/3 tại x = 1

3 tháng 8 2016

GTNN

\(P=\frac{2x}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\forall x\ge0\)

GTLN

\(P=\frac{2}{\frac{x^2+x+1}{x}}=\frac{2}{x+\frac{1}{x}+1}\le\frac{2}{2\sqrt{x.\frac{1}{x}}+1}=\frac{2}{3}\)

Dấu bằng xảy ra khi \(x=\frac{1}{x}\Leftrightarrow x=1\)

21 tháng 7 2016

Áp dụng BĐT Cô - si cho hai số không âm ta được

\(x^2+3+\frac{1}{x^2+3}\ge2\sqrt{\left(x^2+3\right)\cdot\frac{1}{x^2+3}}=2\sqrt{1}=2\)

Dấu = xảy ra \(\Leftrightarrow x^2+3=\frac{1}{x^2+3}\)

\(\Leftrightarrow\left(x^2+3\right)^2=1\)

\(\Leftrightarrow x^4+6x^2+9=1\)

\(\Leftrightarrow x^4+6x^2+8=0\)

\(\Leftrightarrow\left(x^2+2\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow\left(x^2+2\right)=0\) hoặc \(\left(x^2+4\right)=0\)

\(\Leftrightarrow x^2=-2\) hoặc \(x^2=-4\) (vô nghiệm) (Sai đề r hay s á b, mik nghĩ là \(x^2-3\)ms đúng)

Vậy GTNN của M là 2 

2 tháng 8 2016
X có đương không
AH
Akai Haruma
Giáo viên
8 tháng 7 2017

Lời giải:

Tìm max:

Áp dụng BĐT Bunhiacopsky:

\(M^2=(2x+\sqrt{5-x^2})^2\leq (2^2+1)(x^2+5-x^2)=25\)

\(\Rightarrow M\leq 5\) hay \(M_{\max}=5\Leftrightarrow x=2\)

Tìm min:

Ta thấy \(5-x^2\geq 0\Rightarrow x^2\leq 5\rightarrow x\geq -\sqrt{5}\)

Do đó: \(M=2x+\sqrt{5-x^2}\geq =-2\sqrt{5}+0=-2\sqrt{5}\)

\(\Rightarrow M_{\min}=-2\sqrt{5}\Leftrightarrow x=-\sqrt{5}\)

9 tháng 8 2016

\(-----------\)

Đặt  \(\alpha=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}\)và  \(t=\sqrt{x}\)  \(\Rightarrow\) \(\hept{\begin{cases}\alpha>0\\t>0\end{cases}\left(i\right)}\) với mọi  \(x>0\)

Khi đó, ta biểu diễn lại  \(\alpha\)  dưới dạng biến số  \(t\)  như sau:

\(\alpha=\frac{4t^4+9t^2+18t+9}{4t^3+4t^2}=\frac{3\left(4t^3+4t^2\right)+\left(4t^4-12t^3-3t^2+18t+9\right)}{4t^3+4t^2}\)  

nên  \(\alpha=3+\frac{\left(2t^2-3t-3\right)^2}{4t^3+4t^2}\ge0\)  với mọi  \(t>0\)  \(\Rightarrow\)  \(\hept{\begin{cases}4t^3+4t^2>0\\2t^2-3t-3\ge0\end{cases}}\)  (do  \(\Delta_t>0\)  )

Dấu  \("="\)  xảy ra khi và chỉ khi \(2t^2-3t-3=0\) 

Ta thành lập biệt thức  \(D=b^2-4ca\)  với tập xác định của pt là  \(t\in\left(0;\infty\right)\)  như sau:

\(\Delta_t=3^2+4.2.3=33\)

Do đó, ta tính được  \(t_1=\frac{3-\sqrt{33}}{4};\)  \(t_2=\frac{3+\sqrt{33}}{4}\)

Nhưng ta chỉ chấp nhận  

  \(t=\frac{3+\sqrt{33}}{4}\)  (do điều kiện  \(\left(i\right)\) )  làm nghiệm duy nhất của pt.

\(\Rightarrow\)  \(x=\left(\frac{3+\sqrt{33}}{4}\right)^2=\frac{21+3\sqrt{33}}{8}\)

\(-----------\)

Mặt khác,  ta lại áp dụng bđt  \(AM-GM\) loại hai cho bộ số với hai số thực không âm gồm  \(\left(\frac{\alpha}{9};\frac{1}{\alpha}\right)\) , ta có:

\(A=\alpha+\frac{1}{\alpha}=\left(\frac{\alpha}{9}+\frac{1}{\alpha}\right)+\frac{8\alpha}{9}\ge2\left(\frac{\alpha}{9}.\frac{1}{\alpha}\right)^{\frac{1}{2}}+\frac{8.3}{9}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)

Dấu  \("="\)  xảy ra khi và chỉ khi \(\hept{\begin{cases}\alpha=3\\\frac{\alpha}{9}=\frac{1}{\alpha}\end{cases}\Leftrightarrow}\)  \(\alpha=3\)  \(\Leftrightarrow\)  \(x=\frac{21+3\sqrt{33}}{8}\)

Vậy,  \(A_{min}=\frac{10}{3}\)  \(\Leftrightarrow\)  \(x=\frac{21+3\sqrt{33}}{8}\)

9 tháng 8 2016

Điều kiện x>0

Đặt a = 4x+ 9x + 18 √x +9

b = 4x√x + 4x

Từ đó ta có A = a/b + b/a >= 2

Vậy giá trị nhỏ nhất là A = 2 khi a/b = b/a

Phần còn lại bạn tự làm nha