K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2017

Bất đẳng thức Ptolemy lên đó tự xem đi.

19 tháng 8 2017

Câu d: (Thao khảo bất đẳng thức Ptoleme)

Sử dụng tính chất tam giác đồng dạng và bất đẳng thức tam giác.

Dựng điểm E sao cho {\displaystyle \triangle BCD} đồng dạng với {\displaystyle \triangle BEA}. Khi đó, theo tính chất của tam giác đồng dạng, ta có: {\displaystyle {\frac {BA}{EA}}={\frac {BD}{CD}}}

Suy ra {\displaystyle BA.CD=EA.BD(1)}

Mặt khác, {\displaystyle \triangle EBC}{\displaystyle \triangle ABD} cũng đồng dạng do có

{\displaystyle {\frac {BA}{BD}}={\frac {BE}{BC}}}{\displaystyle {\widehat {EBC}}={\widehat {ABD}}}

Từ đó

{\displaystyle {\frac {EC}{BC}}={\frac {AD}{BD}}}

Suy ra

{\displaystyle AD.BC=EC.BD(2)}

Cộng (1) và (2) ta suy ra

{\displaystyle AB\cdot CD+AD\cdot BC=BD\cdot (EA+EC)}

Áp dụng bất đẳng thức tam giác ta suy ra:

{\displaystyle {AB}\cdot {CD}+{BC}\cdot {DA}\geq {AC}\cdot {BD}}(đpcm)

20 tháng 12 2018

a) OB=OC (=R) VÀ AB=AC(/c 2 tt cắt nhau)\(\Rightarrow\)OA LÀ ĐƯỜNG TRUNG TRỤC CỦA BC. b) \(BD\perp AB\)(t/c tt) và BE \(\perp AC\)(A \(\varepsilon\left(O\right)\)đường kính BC ). Aps dụng hệ thúc lượng ta có AE*AC=AB\(^2\)=AC\(^2\).

c) c/m OD\(^2=OB^2=OH\cdot OA\)và OH*OA=OK*OF ( \(\Delta OAK\omega\Delta OFH\left(g-g\right)\))\(\Rightarrow\frac{OD}{OF}=\frac{OK}{OD}\)mà góc FOD chung\(\Rightarrow\Delta OKD\omega\Delta ODF\left(c-g-c\right)\Rightarrow\widehat{ODF}=\widehat{OKD}=90\Rightarrow OD\perp DF\Rightarrowđpcm\)

3 tháng 5 2017

Đường tròn c: Đường tròn qua B_1 với tâm O Đường thẳng q: Tiếp tuyến của c qua A Đường thẳng q: Tiếp tuyến của c qua A Đoạn thẳng h: Đoạn thẳng [A, E] Đoạn thẳng i: Đoạn thẳng [B, E] Đoạn thẳng j: Đoạn thẳng [C, E] Đoạn thẳng k: Đoạn thẳng [O, C] Đoạn thẳng l: Đoạn thẳng [O, B] Đoạn thẳng m: Đoạn thẳng [A, B] Đoạn thẳng n: Đoạn thẳng [A, C] Đoạn thẳng p: Đoạn thẳng [B, D] Đoạn thẳng a: Đoạn thẳng [B, P] Đoạn thẳng b: Đoạn thẳng [C, Q] Đoạn thẳng d: Đoạn thẳng [P, Q] Đoạn thẳng g_1: Đoạn thẳng [B, C] Đoạn thẳng i_1: Đoạn thẳng [M, A] Đoạn thẳng k_1: Đoạn thẳng [O, M] O = (-0.28, -0.29) O = (-0.28, -0.29) O = (-0.28, -0.29) Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm E: Giao điểm của f, g Điểm E: Giao điểm của f, g Điểm E: Giao điểm của f, g Điểm D: Giao điểm của c, h Điểm D: Giao điểm của c, h Điểm D: Giao điểm của c, h Điểm P: Giao điểm của r, s Điểm P: Giao điểm của r, s Điểm P: Giao điểm của r, s Điểm Q: Giao điểm của r, t Điểm Q: Giao điểm của r, t Điểm Q: Giao điểm của r, t Điểm M: Trung điểm của g_1 Điểm M: Trung điểm của g_1 Điểm M: Trung điểm của g_1 Điểm F: Giao điểm của e, d Điểm F: Giao điểm của e, d Điểm F: Giao điểm của e, d

a. Ta thấy ngay tứ giác OBEC có hai góc vuông đối nhau nên nó là tứ giác nội tiếp.

b. Câu này cô thấy cần sửa đề thành AB.AP = AD.AE mới đúng.

Gọi Aq là tiếp tuyến tại A của đường tròn (O). Khi đó ta có: \(\widehat{APE}=\widehat{BAq}\) (so le trong)

Mà \(\widehat{BAq}=\widehat{BDA}\) (Cùng chắn cung BA) nên \(\widehat{APE}=\widehat{BDA}\)

Vậy thì \(\Delta ABD\sim\Delta AEP\left(g-g\right)\Rightarrow\frac{AB}{AE}=\frac{AD}{AP}\Rightarrow AB.AP=AE.AD\)

c. +) Ta thấy \(\Delta BDE\sim\Delta ABE\left(g-g\right)\Rightarrow\frac{BD}{AB}=\frac{BE}{AE}\)

Tương tự \(\Delta CDE\sim\Delta ACE\left(g-g\right)\Rightarrow\frac{CD}{AC}=\frac{DE}{AE}\)

Mà BE = CE nên \(\frac{BD}{AB}=\frac{CD}{AC}\)

Lại có \(\Delta ABD\sim\Delta AEP\left(g-g\right)\Rightarrow\frac{BD}{EP}=\frac{AB}{AE}\Rightarrow EP=\frac{BD.AE}{AB}\)

Tương tự \(\Delta ACD\sim\Delta AEQ\left(g-g\right)\Rightarrow\frac{AC}{AE}=\frac{CD}{EQ}\Rightarrow EQ=\frac{CD.AE}{AC}=\frac{BD.AE}{AB}=EP\)

Vậy EP = EQ.

+) Ta thấy ngay \(\Delta ABC\sim\Delta AQP\Rightarrow\frac{BC}{QP}=\frac{AC}{AP}\Rightarrow\frac{BC:2}{QP:2}=\frac{AC}{QP}\)

\(\Rightarrow\frac{MC}{PE}=\frac{AC}{AP}\)

Lại có  \(\widehat{ACM}=\widehat{APE}\) (Cùng bằng \(\widehat{BDA}\))

Từ đó suy ra \(\Delta AMC\sim\Delta AEP\Rightarrow\widehat{MAC}=\widehat{PAE}\)

3 tháng 5 2017

d. Ta có BD.AC = AB.CD

Lại có do ABCD là tứ giác nội tiếp nên 

AD.BC = AB.CD + AC.BD = 2AB.CD (Định lý Ptoleme)  \(\Rightarrow2MC.AD=2AB.CD\Rightarrow MC.AD=AB.CD\)

\(\Rightarrow\frac{MC}{AB}=\frac{CD}{AD}\)

Lại thấy \(\widehat{BAD}=\widehat{BCD}\Rightarrow\Delta BAD\sim\Delta MCD\left(c-g-c\right)\)

Mà \(\Delta BAD\sim\Delta MAC\Rightarrow\Delta MCD\sim\Delta MAC\)

\(\Rightarrow\frac{MC}{MA}=\frac{MD}{MC}\Rightarrow MA.MD=MC^2=\frac{BC^2}{4}.\)

4 tháng 3 2020

A B C O D E H I F

a) Xét \(\Delta ABE\)và \(\Delta ABD\)có :

\(\widehat{BAE}=\widehat{BAD}\)\(\widehat{ABE}=\widehat{BDE}\)

\(\Rightarrow\Delta ABE\approx\Delta ADB\left(g.g\right)\)

\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AD.AE=AB^2\)( 1 )

Xét \(\Delta ABO\)vuông tại B ( do AB là tiếp tuyến ), đường cao BH ( tự c/m ), ta có hệ thức lượng

\(AH.AO=AB^2\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(AD.AE=AH.AO=AB^2\)

b) \(AD.AE=AH.AO\Rightarrow\frac{AE}{AH}=\frac{AO}{AD}\)

Xét \(\Delta AEH\)và \(\Delta AOD\)có :

\(\frac{AE}{AH}=\frac{AO}{AD}\)\(\widehat{EAH}\)( chung )

\(\Rightarrow\Delta AEH\approx\Delta AOD\left(c.g.c\right)\)\(\Rightarrow\widehat{AHE}=\widehat{ADO}\)( 3 )

Mà \(\Delta ODE\)cân tại O ( do OE = OD ) \(\Rightarrow\widehat{OED}=\widehat{ODE}\)( 4 )

Từ ( 3 ) và ( 4 ) suy ra \(\widehat{AHE}=\widehat{OED}\)

c) đường thẳng qua B vuông góc với CD tại I 

Xét hai tam giác vuông BID và CBI có :

\(\widehat{IDB}=\widehat{CBI}\)\(\widehat{BID}=\widehat{BIC}=90^o\)

\(\Rightarrow\Delta BID\approx\Delta CIB\left(g.g\right)\) \(\Rightarrow\frac{ID}{IB}=\frac{IB}{IC}=\frac{DB}{BC}\)

\(\Rightarrow\frac{ID}{IB}.\frac{IB}{IC}=\frac{ID}{IC}=\frac{BD^2}{BC^2}\)

Mặt khác : \(\Delta DAC\)có : BI // AC

\(\Rightarrow\frac{FI}{AC}=\frac{DI}{DC}=\frac{DI}{DI+CI}=\frac{1}{1+\frac{CI}{DI}}=\frac{1}{1+\frac{BC^2}{BD^2}}=\frac{BD^2}{BD^2+BC^2}=\frac{BD^2}{4R^2}\)( R là bán kính )

\(\Rightarrow FI=\frac{BD^2.AC}{4R^2}\)( 5 )

Xét \(\Delta BCD\)và \(\Delta ACO\)có :

\(\widehat{BCD}=\widehat{OAC}\)\(\widehat{CBD}=\widehat{ACO}=90^o\)

\(\Rightarrow\Delta BCD\approx\Delta CAO\left(g.g\right)\)\(\Rightarrow\frac{BC}{AC}=\frac{BD}{OC}\Rightarrow BC=\frac{AC.BD}{R}\)( 6 )

Xét 2 tam giác vuông BIC và BCD có :

\(\widehat{BCD}\)( chung ) ; \(\widehat{BIC}=\widehat{CBD}=90^o\)

\(\Rightarrow\Delta BIC\approx\Delta DBC\)( g.g )

\(\Rightarrow\frac{IB}{BD}=\frac{BC}{CD}\Rightarrow IB=\frac{BC.BD}{2R}\)( 7 )

Từ ( 6 ) và ( 7 ) suy ra : \(IB=\frac{AC.BD^2}{2R^2}\)( 8 )

Từ ( 5 ) và ( 8 ) suy ra : \(IF=\frac{IB}{2}\Rightarrow\)F là trung điểm của IB

\(\Rightarrow HF\)là đường trung bình của \(\Delta BCI\)\(\Rightarrow HF//CD\)