K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2016

Gọi d là ƯCLN( 5n + 9 ; 4n + 7 ) ( d ∈ N )

Ta có : 5n + 9 ⋮ d và 4n + 7 ⋮ d

 => 4( 5n + 9 ) ⋮ d và 5( 4n + 7 ) ⋮ d

=> 20n + 36 ⋮ d và 20n + 35 ⋮ d

=> ( 20n + 36 ) - ( 20n + 35 ) ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN(5n + 9;4n + 7 ) = 1 nên 5n + 9 và 4n + 7 là nguyên tố cùng nhau ( đpcm )

23 tháng 11 2016

Gọi \(ƯCLN\left(5n+9,4n+7\right)\) là d

\(\Rightarrow\begin{cases}5n+9⋮d\\4n+7⋮d\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}4\left(5n+9\right)⋮d\\5\left(4n+7\right)⋮d\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}20n+36⋮d\\20n+35⋮d\end{cases}\)

\(\Rightarrow\left(20n+36\right)-\left(20n+35\right)⋮d\)

\(\Rightarrow\left(20n+36-20n-35\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vì : \(d=1\Rightarrow\) 5n +9 và 4n + 7 là hai số nguyên tố cùng nhau

Vậy ...

23 tháng 11 2016

cảm ơn bạn

3 tháng 1 2021

                                                          Bài giải

a, Ta có : \(8n+8=4\left(n+2\right)\text{ }⋮\text{ }4\text{ với }\forall n\in N\)

\(\Rightarrow\)Không có số tự nhiên n nào thỏa mãn đề bài

b, Gọi \(ƯCLN\left(5n+7\text{ ; }7n+10\right)=d\)

\(\Leftrightarrow\hept{\begin{cases}\text{ }7n+10\text{ }⋮\text{ }d\\5n+7\text{ }⋮\text{ }d\end{cases}}\text{ }\Rightarrow\hept{\begin{cases}\text{ }5\left(7n+10\right)\text{ }⋮\text{ }d\text{ }\\7\left(5n+7\right)\text{ }⋮\text{ }d\end{cases}}\Rightarrow\hept{\begin{cases}\text{ }35n+50\text{ }⋮\text{ }d\\35n+49\text{ }\text{ }\text{ }⋮\text{ }d\end{cases}}\)

\(\Rightarrow\text{ }\left(35n+50\right)-\left(35n+49\right)\text{ }⋮\text{ }d\)

\(\Rightarrow\text{ }1\text{ }⋮\text{ }d\text{ }\Rightarrow\text{ }d=1\)

\(\Rightarrow\text{ }5n+7\text{ và }7n+10\) là 2 số nguyên tố cùng nhau

9 tháng 11 2016

A=13.15.19+21.27.23=13.3.5.19+3.7.27.23

  = 3.(13.5.19+7.27.23) chia hết cho 3

=> A là hợp số

B=5.7.9.11-10.17.4=5.7.9.11-5.2.17.4

B=5.(7.9.11-2.17.4) chia hết cho 5

=>B là hợp số 

6 tháng 11 2016

a) Gọi 2 số tự nhiên lẻ liên tiếp là 2k+1 và 2k+3

Gọi ước chung lớn nhất của 2k+1 và 2k+3 là d

=> 2k+1 chia hết cho d; 2k+3 chia hết cho d

=> (2k+1 - 2k-3) chia hết cho d

=> -2 chia hết cho d

=> d thuộc Ư(-2) => d thuộc {-2; -1; 1; 2}

mà d lớn nhất; số tự nhiên lẻ không chia hết cho 2 => d = 1

=> 2 số tự nhiên lẻ liên tiếp là 2 số nguyên tố cùng nhau

b) Gọi ƯCLN(2n+5;3n+7) là d

=> 2n+5 chia hết cho d => 3(2n+5) chia hết cho d => 6n+15 chia hết cho d

3n+7 chia hết cho d => 2(3n+7) chia hết cho d => 6n+14 chia hết cho d

=> (6n+15-6n-14) chia hết cho d

=> 1 chia hết cho d

=> d thuộc Ư(1)

mà d lớn nhất => d = 1

=> 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau

30 tháng 5 2017

a) Gọi d là ƯCLN(7n+1;5n+7) => 7n+10 chia hết cho d; 5n+7 chia hết cho d

=>5(7n+10) chia hết cho d; 7(5n+7) chia hết cho d

=>35n+50 chia hết cho d; 35n+49 chia hết cho d

=>(35n+50)-(35n+49) chia hết cho d

=>1 chia hết cho d

=>d=1

=>7n+10 và 5n+7 nguyên tố cùng nhau với mọi n

30 tháng 5 2017

b) Gọi m là ƯCLN(2n+3;4n+8) => 2n+3 chia hết cho m;4n+8 chia hết cho m

=>2(2n+3) chia hết cho m => 4n+6 chia hết cho m

=>(4n+8)-(4n+6) chia hết cho m 

=>2 chia hết cho m

=>m thuộc {1;2}

2n+3 là số lẻ => 2n+3 không chia hết cho 2 => m khác 2

=>m=1

=>đpcm

2 tháng 7 2015

a) Gọi d > 0 \(\in\) ƯC(7n+10;5n+7)
\(\Rightarrow\) d \(\in\) Ư [5.(7n+10) = 35n +50]
và d là ước số của 7(5n+7)= 35n +49 
mà (35n + 50) - (35n +49) =1 
\(\Rightarrow\) d là ước số của 1 \(\Rightarrow\) d = 1 
vậy 7n+10 và 5n+7 nguyên tố cùng nhau. 

b) Gọi d > 0 là ước số chung của 2n+3 và 4n + 8 
\(\Rightarrow\) d \(\in\) Ư [2(2n + 3) = 4n + 6] 
(4n + 8) - (4n + 6) = 2 
\(\Rightarrow\) d \(\in\) Ư(2) \(\Rightarrow\) d \(\in\) {1,2} 
d = 2 không là ước số của số lẻ 2n+3 \(\Rightarrow\) d = 1 
vậy 2n+3 và 4n + 8 nguyên tố cùng nhau. 

11 tháng 8 2016

 Vây : 2n + 3 va 4n + 8 nguyên tố cùng nhau

9 tháng 12 2016

 a/GỌI ƯCLN CỦA A VÀ B LÀ D

ƯCLN (4n+3;5n+1)=D

suy ra {4n+3 chia hết cho D

           {5n+1 chia hết cho D

suy ra{5(4n+3) chia hết cho D

          {4(5n+1) chi hết cho D

suy ra 5(4n+3)-4(5n+1) chia hết cho D 

suy ra (20n+3)-(20n+1) chia hết cho D

suy ra          3   -    1      chia hết cho D

suy ra              2             chia hết cho D

SUY RA D thuộc Ư(2)

suy ra D =2 (tm đề bài)

VẬY ƯCLN  của (a;b) = 2

29 tháng 1 2018

Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:

4n+3 chia hết cho d => 20n+15 chia hết cho d

5n+1 chia hết cho d => 20n+4 chia hết cho d

=> 20n+15-(20n+4) chia hết cho d

=> 11 chia hết cho d

=> d thuộc Ư(11)

=> d thuộc {1; -1; 11; -11}

Mà 4n+3 và 5n+1 không nguyên tố cùng nhau

=> d = 11

=> ƯCLN(4n+3; 5n+1) = d

Chúc bạn học tốt

12 tháng 11 2017

Gọi d là Ước chung lớn nhất của 5n+9 và 4n+7

=> 5n+9 chia hết cho d

     4n+7 chia hết cho d

=> 4( 5n + 9 ) - 5( 4n + 7 ) chia hết cho d

=> ( 20n + 36 ) - ( 20n + 35 ) chia hết cho d

=> 1 chia hết cho d

=> d = 1 

Vậy 5n+9 và 4n+7 là hai số nguyên tố cùng nhau 

16 tháng 9 2017

a, Gọi ƯCLN(5n + 3, 3n + 2) = d

Ta có: \(\hept{\begin{cases}5n+3⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+9⋮d\\15n+10⋮d\end{cases}}}\) 

=> 15n + 10 - (15 n + 9) chia hết cho d

=> 1 chia hết cho d

=> d thuộc {1;-1}

Vậy...

b, Gọi ƯCLN(4n + 3, 6n + 4) = d

Ta có: \(\hept{\begin{cases}4n+3⋮d\\6n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}12n+9⋮d\\12n+8⋮d\end{cases}}}\)

=> 12n + 9 - (12n + 8) chia hết cho d

=> 1 chia hết cho d

=> d thuộc {1;-1}

Vậy...

c, Gọi ƯCLN(12n + 5, 5n + 2) = d

Ta có: \(\hept{\begin{cases}12n+5⋮d\\5n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}60n+25⋮d\\60n+24⋮d\end{cases}}}\)

=> 60n + 25 - (60n + 24) chia hết cho d

=> 1 chia hết cho d

=> d = {1;-1}

Vậy... 

16 tháng 9 2017

Gọi d là ƯCLN của 5n + 3 và 3n + 2

Khi đó : 5n + 3 chia hết cho d , 3n + 2 chia hết cho d

=> 15n + 9 chia hết cho d , 15n + 10 chia hết cho d

=> 15n + 10 - 15n - 9 = 1 chia hết cho d

=> d = 1

Vậy 5n + 3 và 3n + 2 nguyên tố cùng nhau .