Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a) Ta có \(\left(x-2\right)^2\ge0\)
\(\left(y+3\right)^4\ge0\)
\(\left(z+4\right)^6\ge0\)
mà \(\left(x-2\right)^2+\left(y+3\right)^4+\left(z+4\right)^6=0\)
nên \(x-2=0\Rightarrow x=2\)
\(y+3=0\Rightarrow y=-3\)
\(z+4=0\Rightarrow z=-4\)
b) \(3x=2y\Rightarrow x=\frac{2y}{3}\)
\(\frac{y}{5}=\frac{z}{4}\Rightarrow z=\frac{4y}{5}\)
Do đó \(x+y+z=-3,9\)
hey \(\frac{2y}{3}+\frac{4y}{5}+y=-3,9\)
giải tìm ra y thế vào lại để tìm x,z
2)
a)
\(-\frac{5}{4}-\frac{-7}{12}+\frac{-2}{3}+\frac{5}{6}-\frac{3}{2}=-\frac{15}{12}+\frac{7}{12}-\frac{8}{12}+\frac{10}{12}-\frac{18}{12}=\frac{-15+7-8+10-18}{12}\)
\(=-\frac{24}{12}=-2\)
b) \(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Rightarrow\frac{1}{2}S=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{101}}\)
\(\Rightarrow S-\frac{1}{2}S=\frac{1}{2}-\frac{1}{2^{101}}\)
\(\frac{1}{2}S=\frac{2^{100}-1}{2^{101}}\)
\(S=\frac{2^{100}-1}{2^{100}}\)
Ta có : \(\left(x-2\right)^2\ge0\forall x\)
\(\left(y+3\right)^4\ge0\forall y\)
\(\left(z+4\right)^2\ge0\forall z\)
Mà : ( x - 2 )2 + ( y + 3 )4 + ( z + 4 )6 = 0
Nên : pt <=> x - 2 = 0
y + 3 = 0
z + 4 = 0
<=> x = 2
y = -3
z = -4
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
Bài 2:
a: \(\Leftrightarrow x=\dfrac{29}{60}\cdot\dfrac{-7}{5}=\dfrac{-203}{300}\)
b: \(\Leftrightarrow x\cdot\dfrac{2}{5}=\dfrac{29}{60}-\dfrac{3}{4}=\dfrac{29-45}{60}=\dfrac{-16}{60}=\dfrac{-8}{30}\)
\(\Leftrightarrow x=\dfrac{-8}{30}:\dfrac{2}{5}=\dfrac{-8\cdot5}{30\cdot2}=\dfrac{-40}{60}=-\dfrac{2}{3}\)
1.
\(11^{n+2}+12^{2n+1}=11^n.11^2+12^{2n}.12\)
\(=121\left(11^n-12^{2n}\right)+133.12^{2n}\)(đoạn này dùng HĐT \(a^n-b^n\)chia hết cho \(a+b\) với n chẵn)
\(=-121.133.M+133.12^{2n}\)chia hết cho 133 (M là 1 biểu thức nào đó ta không cần quan tâm)
2.
a) - Chia cả hai vế cho \(5^x\):
pt <=>\(\frac{3^x+4^x}{5^x}=1\)
- Ta nhận thấy x = 2 là nghiệm của phương trình
- Ta phải chứng minh x = 2 là nghiệm duy nhất của phương trình
+ Với x > 2: \(\left(\frac{3}{5}\right)^x<\left(\frac{3}{5}\right)^2\) (do \(\frac{3}{5}<1\))
\(\left(\frac{4}{5}\right)^x<\left(\frac{4}{5}\right)^2\)(do \(\frac{4}{5}<1\))
Cộng 2 vế: \(\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x<\left(\frac{3}{5}\right)^2+\left(\frac{4}{5}\right)^2=1\) (trái gt)
=> Phương trình không có nghiệm khi x> 2.
+ Tương tự với x < 2, phương trình không có nghiệm khi x< 2.
- Vậy phương trình có nghiệm duy nhất x = 2.
b) + c) tự làm nhá, lười quá
a)(2x-3)2=1<=> \(\orbr{\begin{cases}2x-3=1\\2x-3=-1\end{cases}< =>\orbr{\begin{cases}2x=4\\2x=2\end{cases}}}\)\(< =>\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
x=2 =>22.52=20y.5y <=>100 = 100y <=> y=1
x=1 => 2.5= 20y.5y <=>10=100y <=>y = 1/2
b)(4x-3)2+(y2-9)2\(\ge0\)
dấu = sảy ra khi \(\hept{\begin{cases}4x-3=0\\y^2-9=0\end{cases}< =>\hept{\begin{cases}4x=3\\y^2=9\end{cases}}}\)\(\hept{\begin{cases}x=\frac{3}{4}\\y=\pm3\end{cases}}\)
c) <=> (y-5)8 \(\le-\left(x+4\right)^7\) (1)
(y-5)8 >=0 với mọi y nên -(x+4)7 \(\ge\left(y-5\right)^8\ge0\)<=> (x+4)7\(\le0< =>x+4\le0< =>x\le-4\)
Khi đó (1) <=> y-5\(\le\sqrt[8]{-\left(x+4\right)^7}\) <=> y\(\hept{\begin{cases}y\le5-\sqrt[8]{-\left(x+4\right)^7}\\x\le-4\end{cases}}\)
c) TH1 : x <=3 thì |3 -x| = 3 -x do đó ta đc 3 - x + 3x - 1 =0=> x = -1
TH2 : x > 3 thì |3 -x| = x -3, do đó ta đc : x - 3 + 3x -1 =0 => x = 1
a, Xét (3x-5)^2006; (y^2-1)^2008;9x-7)^2100 lú nào cũng lớn hơn hoặc bằng 0 nên suy ra (3x-5)^2006 +(Y^2-1)^2008+(x-7)^2100 >hoặc bằng 0 . Dể cộng vào bằng 0 thì (3x-5)^2006 =0; (y^2-1)^2008=0; (x-7)^2100=0 suy ra 3x-5=0;Y^2-1=0;'x-7=0
3x=5,x=5/3; y^2=1 ,y=+ - 1;x=7
câu 1
a(0,125)3x83=(0,125x8)3=13=1
b,2-(\(\frac{-3}{2}\))0+\(\frac{16}{4}:\frac{1}{2}\)=2-1+4:\(\frac{1}{2}\)=1+8=9
c\(^{3^5\cdot\frac{9}{3^7}\cdot2^0}\)=\(3^5\cdot\frac{3}{1}\cdot1=3^5\cdot3\cdot1=3^6\)
d,\(\frac{3}{2}-\frac{5}{6}:\left(\frac{1}{2}\right)^2=\frac{3}{2}-\frac{5}{6}:\frac{1}{4}=\frac{3}{2}-\frac{10}{3}=\frac{9}{6}-\frac{20}{6}=\frac{-11}{6}\)
câu 2
a\(\frac{x}{2}=\frac{4}{5}=\Rightarrow x\cdot5=2\cdot4\Rightarrow x=\frac{2.4}{5}=1,6\)