Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a) Ta có \(\left(x-2\right)^2\ge0\)
\(\left(y+3\right)^4\ge0\)
\(\left(z+4\right)^6\ge0\)
mà \(\left(x-2\right)^2+\left(y+3\right)^4+\left(z+4\right)^6=0\)
nên \(x-2=0\Rightarrow x=2\)
\(y+3=0\Rightarrow y=-3\)
\(z+4=0\Rightarrow z=-4\)
b) \(3x=2y\Rightarrow x=\frac{2y}{3}\)
\(\frac{y}{5}=\frac{z}{4}\Rightarrow z=\frac{4y}{5}\)
Do đó \(x+y+z=-3,9\)
hey \(\frac{2y}{3}+\frac{4y}{5}+y=-3,9\)
giải tìm ra y thế vào lại để tìm x,z
2)
a)
\(-\frac{5}{4}-\frac{-7}{12}+\frac{-2}{3}+\frac{5}{6}-\frac{3}{2}=-\frac{15}{12}+\frac{7}{12}-\frac{8}{12}+\frac{10}{12}-\frac{18}{12}=\frac{-15+7-8+10-18}{12}\)
\(=-\frac{24}{12}=-2\)
b) \(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Rightarrow\frac{1}{2}S=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{101}}\)
\(\Rightarrow S-\frac{1}{2}S=\frac{1}{2}-\frac{1}{2^{101}}\)
\(\frac{1}{2}S=\frac{2^{100}-1}{2^{101}}\)
\(S=\frac{2^{100}-1}{2^{100}}\)
Ta có : \(\left(x-2\right)^2\ge0\forall x\)
\(\left(y+3\right)^4\ge0\forall y\)
\(\left(z+4\right)^2\ge0\forall z\)
Mà : ( x - 2 )2 + ( y + 3 )4 + ( z + 4 )6 = 0
Nên : pt <=> x - 2 = 0
y + 3 = 0
z + 4 = 0
<=> x = 2
y = -3
z = -4
2)a+b=ab=a/b
từ a+b=ab
=>a=ab-b=b(a-1)
=>a/b=a-1
mà a/b=a+b=>a+b=a-1=>b=-1
thay b=-1 vào a+b=ab ta được a+(-1)=a.(-1)=>a=1/2
vậy a=1/2=0,5;b=-1
Bài 1:
a) Ta có: \(x=7\Rightarrow8=x+1\)
Thay vào ta được:
\(A=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(A=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-...-x^3-x^2+x^2+x-5\)
\(A=x-5\)
\(A=7-5=2\)
Vậy khi x = 7 thì A = 2
Bài 2:
a) \(\left(n^2+3n-1\right)\left(n+2\right)-n^3-2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3-2\)
\(=5n^2+5n-4\)
Mà 5n2 + 5n chia hết cho 5 mà 4 không chia hết cho 5
=> \(5n^2+5n-4\) không chia hết cho 5
=> điều cần cm sai
Bài 2:
b) \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)
\(=n^2+3n-4-n^2+3n+4\)
\(=6n\) luôn chia hết cho 6 với mọi số nguyên n
=> đpcm