K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 5 2021

Lời giải:

\(S_{35}=1-2+3-4+...+35\)

\(=(1-2)+(3-4)+...+(33-34)+35=(-1)+..+(-1)+35\)

\(=(-1).17+35=18\)

\(S_{60}=1-2+3-4+...-60=(1-2)+(3-4)+...+(59-60)\)

\(=(-1)+(-1)+...+(-1)=-30\)

Do đó:

\(S_{35}+S_{60}=-18+30=12\)

12 tháng 7 2023

\(S_{35}=1-2+3-4+...+35\)

\(\Rightarrow S_{35}=\left(-1\right)+\left(-1\right)+...+35=17.\left(-1\right)+35=18\)

\(S_{60}=1-2+3-4+...+60\)

\(\Rightarrow S_{60}=\left(-1\right)+\left(-1\right)+...+59-60=30.\left(-1\right)=-30\)

\(\Rightarrow S_{35}+S_{60}=18-30=-12\)

 

16 tháng 5 2018

Giả sử \(S_n\) là số nguyên

ta có: \(S_n=\frac{1^2-1}{1}+\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+...+\frac{n^2-1}{n^2}\)

\(S_n=\frac{1^2}{1}-\frac{1}{1}+\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+...+\frac{n^2}{n^2}-\frac{1}{n^2}\)

\(S_n=0+1-\frac{1}{2^2}+1-\frac{1}{3^2}+...+1-\frac{1}{n^2}\)

\(S_n=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{n^2}\right)\) ( 1+1+...+1 có ( n-2) :1+1 = n -1 số 1)

để \(S_n\in z\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\in z\)(1)

mà \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)

                                                        \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

                                                         \(=1-\frac{1}{n}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1\)(*)

mà \(\frac{1}{2^2}>0;\frac{1}{3^2}>0;...;\frac{1}{n^2}>0\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}>0\) (**)

Từ (*);(**) \(\Rightarrow0< \frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1\)

               \(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\) không phải là số nguyên

Từ (1) => \(S_n\) không phải là số nguyên ( điều phải chứng minh)

17 tháng 3 2020

haha quá chuẩn