K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NA
3
Các câu hỏi dưới đây có thể giống với câu hỏi trên
ND
1
WR
16 tháng 7 2017
Ta có:
\(\frac{1}{2^2}< \frac{1}{1.2},\frac{1}{3^2}< \frac{1}{2.3},...,\frac{1}{45^2}< \frac{1}{44.45}.\)
\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{45^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{44.45}.\)
\(\Leftrightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{44}-\frac{1}{45}=1-\frac{1}{45}< 1.\)
Lại có A>0
=>0<A<1
=>A không là số nguyên
Giả sử \(S_n\) là số nguyên
ta có: \(S_n=\frac{1^2-1}{1}+\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+...+\frac{n^2-1}{n^2}\)
\(S_n=\frac{1^2}{1}-\frac{1}{1}+\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+...+\frac{n^2}{n^2}-\frac{1}{n^2}\)
\(S_n=0+1-\frac{1}{2^2}+1-\frac{1}{3^2}+...+1-\frac{1}{n^2}\)
\(S_n=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{n^2}\right)\) ( 1+1+...+1 có ( n-2) :1+1 = n -1 số 1)
để \(S_n\in z\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\in z\)(1)
mà \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1\)(*)
mà \(\frac{1}{2^2}>0;\frac{1}{3^2}>0;...;\frac{1}{n^2}>0\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}>0\) (**)
Từ (*);(**) \(\Rightarrow0< \frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\) không phải là số nguyên
Từ (1) => \(S_n\) không phải là số nguyên ( điều phải chứng minh)
haha quá chuẩn