Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Thay m=-7 vào pt ta được: \(x^4+5x^2-14=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=2\\x^2=-7\left(L\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy...
b) Đặt \(t=x^2\left(t\ge0\right)\)
=>Với mỗi t dương ta tìm được hai nghiệm x phân biệt
Pttt: \(t^2-\left(m+2\right)t+3m+7=0\) (*)
Để pt ban đầu có hai nghiệm pb <=> pt (*) có 1 nghiệm dương duy nhất hoặc có hai nghiệm phân biệt trái dấu
TH1:PT (*) có 1 nghiệm dương duy nhất
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=0\\-\dfrac{b}{2a}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-8m-24=0\\\dfrac{m+2}{2}>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=4+2\sqrt{10}\\m=4-2\sqrt{10}\end{matrix}\right.\\m>-2\end{matrix}\right.\)\(\Rightarrow m=4+2\sqrt{10}\) (1)
TH2: Pt (*) có hai nghiệm phân biệt trái dấu
\(\Leftrightarrow ac< 0\) \(\Leftrightarrow3m+7< 0\) \(\Leftrightarrow m< -\dfrac{7}{3}\) (2)
Từ (1) (2) =>\(\left[{}\begin{matrix}m=4+2\sqrt{10}\\m< -\dfrac{7}{3}\end{matrix}\right.\)
trông kết quả em tự làm ra không được tròn nên em gửi câu hỏi lên đây. Hóa ra mình làm đúng (??????)
Đề bài của b thiếu vế phải nên mihf mặc định bằng 0 luôn nha.
a) m=-1 => \(x^2-x-2=0\)
Xét a-b+c=1+1-2=0
=>x1= -1 ; x2=2
b) Delta =\(\left(2m+1\right)^2-4\left(m^2+3m\right)=4m^2+4m+1-4m^2-12m=-8m+1\)
Pt có 2 nghiệm pb=> \(-8m+1\ge0\Leftrightarrow m\le\frac{1}{8}\)
ÁP dụng định lí Viets ta có:
x1+x2=-2m-1
x1.x2=\(m^2+3m\)
Ta có: x1.x2=4
=>\(m^2+3m=4\Leftrightarrow m^2+3m-4=0\)
Xét a+b+c=1+3-4=0
=>m1= 1(loại)
m2=-4(thỏa mãn)
Vậy m=-4
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
Phương trình (2m - 1) x 2 - 2(m + 4)x + 5m + 2 = 0 ( m ≠ 1 2 )