Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
tìm a,b,c biết:
3a = 2b; 4b = 3c và a + 2b - 3c
giải
\(3a=2b\Rightarrow\frac{a}{2}=\frac{b}{3};4b=3c\Rightarrow\frac{b}{3}=\frac{c}{4}\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}\) và a + 2b - 3c
áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
với \(\frac{a}{2}=5\Rightarrow a=5.2=10\)
với \(\frac{2b}{6}=5\Rightarrow b=\frac{5.6}{2}=15\)
với \(\frac{3c}{12}=5\Rightarrow c=\frac{5.12}{3}=20\)
vậy a = 10,b=15,c=20
tương tự câu 2
có a+b/b=k=>a+b=b.k=>b.k/b=k
c+d/d=k=>c+d=d.k=>d.k/d=k
=>a+b/b=c+d/d
a) ta có: \(\frac{a}{4}=\frac{b}{5};\frac{b}{5}=\frac{c}{8}\)
\(\Rightarrow\frac{a}{4}=\frac{b}{5}=\frac{c}{8}=\frac{5a}{20}=\frac{3b}{15}=\frac{3c}{24}\)
ADTCDTSBN
...
bn tự áp dụng rùi tìm a;b;c nha
b) ta có: \(\frac{a+3}{5}=\frac{b-2}{3}=\frac{c-1}{7}=\frac{3a+9}{15}=\frac{5b-10}{15}=\frac{7c-7}{49}\)
ADTCDTSBN
có: \(\frac{3a+9}{15}=\frac{5b-10}{15}=\frac{7c-7}{49}=\frac{3a+9-5b+10+7c-7}{15-15+49}\)
\(=\frac{\left(3a-5b+7c\right)+\left(9+10-7\right)}{49}=\frac{86+12}{49}=\frac{98}{49}=2\)
=>...
c) ta cóL \(\frac{a}{7}=\frac{b}{6}\Rightarrow\frac{a}{35}=\frac{b}{30}\)
\(\frac{b}{5}=\frac{c}{8}\Rightarrow\frac{b}{30}=\frac{c}{48}\)
\(\Rightarrow\frac{a}{35}=\frac{b}{30}=\frac{c}{48}=\frac{2b}{60}\)
ADTCDTSBN
...
các bài còn lại bn dựa vào mak lm nha!
Bài 1 Cho a/b=c/d
Chứng tỏ rằng
a) a/b=a+c/c+d(Bn xem lại đề coi nhầm k nhé)
b)a-b/b=c-d/d
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => a=bk, c=dk
Ta có: \(\dfrac{a-b}{b}=\dfrac{bk-b}{b}=\dfrac{b\left(k-1\right)}{b}=k-1\left(1\right)\)
\(\dfrac{c-d}{d}=\dfrac{dk-d}{d}=\dfrac{d\left(k-1\right)}{d}=k-1\left(2\right)\)
Từ (1) và (2)=> \(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
c)2a-3c/2b-3d=2a+3c/2b+3b
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => a=bk, c=dk
Ta có \(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\left(1\right)\)
\(\dfrac{2a+3c}{2b+3d}\)\(=\dfrac{2bk+3dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}\)\(=k\)\(\left(2\right)\)
Từ (1) và (2) => \(\dfrac{2a-3c}{2b-3d}=\dfrac{2a+3c}{2b+3d}\)
Bài 2 tìm a,b biết
a/b=11/13 ; ƯCLN(a,b)(Bn phải đưa ra UCLN(a,b) là mấy đã rồi mik giúp nhé)
Bài 2: Tìm a, b biết
a/b=11/13; ƯCLN(a,b)=3
Vì \(\dfrac{a}{b}=\dfrac{11}{13}\)=> a=11k, b=13k (k thuộc N* và k nguyên tố)
Vì ƯCLN(a,b)= 3=> 11k và 13k chia hết cho 3
=> 13k-11k=2k chia hết cho 3
Vì 2 không chia hết cho k=> k chia hết cho 3
Vậy k=3(Vì k nguyên tố)
Vậy: 11k = 11.3=33
13k = 13.3=39
Vậy a = 33 và b = 39
Tìm các số a, b, c biết rằng :
1 . Ta có: \(\frac{a}{20}=\frac{b}{9}=\frac{c}{6}=\frac{a}{20}=\frac{2b}{9.2}=\frac{4c}{6.4}=\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)
Ap dụng tính chất dãy tỉ số bắng nhau ta dược :
\(\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)=\(\frac{a-2b+4c}{20-18+24}=\frac{13}{26}=\frac{1}{3}\)( do x+2b+4c=13)
Nên : a/20=1/3\(\Leftrightarrow\) a=1/3.20 \(\Leftrightarrow\)a=20/3
b/9=1/3 \(\Leftrightarrow\) b=1/3.9 \(\Leftrightarrow\) b=3
c/6=1/3 \(\Leftrightarrow\) c=1/3.6 \(\Leftrightarrow\) c= 2
a) \(G=\frac{\frac{3a}{b}-\frac{2b}{b}}{\frac{a}{b}-\frac{3b}{b}}=\frac{3.\frac{10}{3}-2}{\frac{10}{3}-3}=\frac{10-2}{\frac{1}{3}}=24\)
b) \(H_1=\frac{\frac{2a-3b}{b}}{\frac{4a+3b}{b}}=\frac{\frac{2a}{b}-\frac{3b}{b}}{\frac{4a}{b}+\frac{3b}{b}}=\frac{2.\frac{10}{3}-3}{4.\frac{10}{3}+3}=\frac{\frac{11}{3}}{\frac{49}{3}}=\frac{11}{49}\)
\(H_2=\frac{\frac{5a-4b}{b}}{\frac{3a+b}{b}}=\frac{5.\frac{a}{b}-4}{3.\frac{a}{b}+1}=\frac{5.\frac{10}{3}-4}{3.\frac{10}{3}+1}=\frac{\frac{38}{3}}{\frac{33}{3}}=\frac{38}{33}\)
=> \(H=\frac{11}{49}-\frac{38}{33}=\frac{-1499}{1617}\)