K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

a, Ta có: \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\)<0

Vì (2a+1)2 >=0;(b+3)^4>=0;(5c-6)2 >=0

\(\Rightarrow\)Không tìm được a,b,c

4 tháng 1 2020

KHông thể đổi em nhé: \(a=\frac{3}{4}b\Rightarrow\frac{a}{3}=\frac{b}{4}\)

Bài giải:

TH1: a = 0 =>  b = c = 0 => 0 + 0 + 0 = 6 loại

Th2: a \(\ne\)0 => b, c \(\ne\)

Có: \(2a=3b=4c\Rightarrow\frac{2a}{abc}=\frac{3b}{abc}=\frac{4c}{abc}\Rightarrow\frac{2}{bc}=\frac{3}{ac}=\frac{4}{ab}\)

=> \(\frac{ab}{4}=\frac{bc}{2}=\frac{ac}{3}=\frac{ab+bc+ac}{4+2+3}=\frac{6}{9}=\frac{2}{3}\)

=> \(ab=\frac{8}{3}\)\(bc=\frac{4}{3}\)\(ac=2\)

Lại có: \(2a=4c\Rightarrow a=2c\)thay vào \(ac=2\)

=> \(2c.c=2\)=> \(c=\pm1\)

Với c = 1  => \(a=2;b=\frac{4}{3}\)

Với c = -1 => \(a=-2;b=-\frac{4}{3}\)

4 tháng 1 2020

BƯỚC ĐỔI NHƯ VẬY PK KO Ạ

\(a=\frac{3}{4}b\)

\(\Leftrightarrow b\frac{3}{4}=a\)

\(\Leftrightarrow\frac{3}{4}=\frac{a}{b}\)

\(\Leftrightarrow\frac{b}{4}=\frac{a}{3}\)

28 tháng 9 2016

Câu 1:

a)Áp dụng tc dãy tỉ:

\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)

\(\Rightarrow\begin{cases}\frac{x}{3}=2\Rightarrow x=6\\\frac{y}{7}=2\Rightarrow y=14\end{cases}\)

b)Áp dụng tc dãy tỉ:

\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)

\(\Rightarrow\begin{cases}\frac{x}{5}=2\Rightarrow x=10\\\frac{y}{2}=2\Rightarrow y=4\end{cases}\)

Câu 2:

a)\(\frac{x}{7}=\frac{18}{14}\Rightarrow14x=18\cdot7\)

\(\Rightarrow14x=126\)

\(\Rightarrow x=9\)

b và c đề có vấn đề

28 tháng 9 2016

Câu 1:

a) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)

+) \(\frac{x}{3}=2\Rightarrow x=6\)

+) \(\frac{y}{7}=2\Rightarrow y=14\)

Vậy cặp số \(\left(x,y\right)\) là \(\left(6,14\right)\)

b) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)

+) \(\frac{x}{5}=2\Rightarrow x=10\)

+) \(\frac{y}{2}=2\Rightarrow y=4\)

Vậy cặp số \(\left(x,y\right)\) là \(\left(10,4\right)\)

Câu 3:

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{x-y+z}{2-4+6}=\frac{8}{4}=2\)

+) \(\frac{x}{2}=2\Rightarrow x=4\)

+) \(\frac{y}{4}=2\Rightarrow y=8\)

+) \(\frac{z}{6}=2\Rightarrow z=12\)

Vậy bộ số \(\left(x,y,z\right)\) là \(\left(4,8,12\right)\)

Câu 4:

Giải: 

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có: 

\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)

\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)

Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

27 tháng 8 2016

a/ Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c};c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=k^3\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)

Áp dụng tính chất của tỉ lệ thức ta có:\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=k^3\)

Mặt khác: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\frac{a+b+c}{b+c+d}=k\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=k^3\)

\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(=k^3\right)\)

27 tháng 8 2016

giup minh nha: Tinh nhanh lop 4

42 x 43 - 12 x 9 - 42 x 3

15 tháng 3 2022

`Answer:`

a. Ta đặt \(\hept{\begin{cases}k=\frac{a}{b}=\frac{c}{d}\\bk=a\\dk=c\end{cases}}\)

\(\Rightarrow\frac{a+b}{b}=\frac{b+bk}{b}=\frac{\left(k+1\right).b}{b}=k+1\left(1\right)\)

\(\Rightarrow\frac{c+d}{d}=\frac{d+dk}{d}=\frac{\left(k+1\right).d}{d}=k+1\left(2\right)\)

Từ `(1)(2)=>\frac{a+b}{b}=\frac{c+d}{d}`

1) Ta có: \(\frac{a}{3}=\frac{b}{4}\)

\(\Leftrightarrow\frac{a}{15}=\frac{b}{20}\)(1)

Ta có: \(\frac{b}{5}=\frac{c}{7}\)

\(\Leftrightarrow\frac{b}{20}=\frac{c}{28}\)(2)

Từ (1) và (2) suy ra \(\frac{a}{15}=\frac{b}{20}=\frac{c}{28}\)

\(\Leftrightarrow\frac{2a}{30}=\frac{3b}{60}=\frac{c}{28}\)

mà 2a+3b-c=186

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{2a}{30}=\frac{3b}{60}=\frac{c}{28}=\frac{2a+3b-c}{30+60-28}=\frac{186}{62}=3\)

Do đó:

\(\left\{{}\begin{matrix}\frac{2a}{30}=3\\\frac{3b}{60}=3\\\frac{c}{28}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=90\\3b=180\\c=84\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=45\\b=60\\c=84\end{matrix}\right.\)

Vậy: (a,b,c)=(45;60;84)

2) Ta có: \(\frac{a}{3}=\frac{b}{4}\)

\(\Leftrightarrow\frac{a}{9}=\frac{b}{12}\)(3)

Ta có: \(\frac{b}{3}=\frac{c}{5}\)

\(\Leftrightarrow\frac{b}{12}=\frac{c}{20}\)(4)

Từ (3) và (4) suy ra \(\frac{a}{9}=\frac{b}{12}=\frac{c}{20}\)

\(\Leftrightarrow\frac{2a}{18}=\frac{3b}{36}=\frac{c}{20}\)

mà 2a-3b+c=6

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{2a}{18}=\frac{3b}{36}=\frac{c}{20}=\frac{2a-3b+c}{18-36+20}=\frac{6}{2}=3\)

Do đó:

\(\left\{{}\begin{matrix}\frac{2a}{18}=3\\\frac{3b}{36}=3\\\frac{c}{20}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=54\\3b=108\\c=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=27\\b=36\\c=60\end{matrix}\right.\)

Vậy: (a,b,c)=(27;36;60)