Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: \(\frac{a}{4}=\frac{b}{5};\frac{b}{5}=\frac{c}{8}\)
\(\Rightarrow\frac{a}{4}=\frac{b}{5}=\frac{c}{8}=\frac{5a}{20}=\frac{3b}{15}=\frac{3c}{24}\)
ADTCDTSBN
...
bn tự áp dụng rùi tìm a;b;c nha
b) ta có: \(\frac{a+3}{5}=\frac{b-2}{3}=\frac{c-1}{7}=\frac{3a+9}{15}=\frac{5b-10}{15}=\frac{7c-7}{49}\)
ADTCDTSBN
có: \(\frac{3a+9}{15}=\frac{5b-10}{15}=\frac{7c-7}{49}=\frac{3a+9-5b+10+7c-7}{15-15+49}\)
\(=\frac{\left(3a-5b+7c\right)+\left(9+10-7\right)}{49}=\frac{86+12}{49}=\frac{98}{49}=2\)
=>...
c) ta cóL \(\frac{a}{7}=\frac{b}{6}\Rightarrow\frac{a}{35}=\frac{b}{30}\)
\(\frac{b}{5}=\frac{c}{8}\Rightarrow\frac{b}{30}=\frac{c}{48}\)
\(\Rightarrow\frac{a}{35}=\frac{b}{30}=\frac{c}{48}=\frac{2b}{60}\)
ADTCDTSBN
...
các bài còn lại bn dựa vào mak lm nha!
a, Ta có: \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\)<0
Vì (2a+1)2 >=0;(b+3)^4>=0;(5c-6)2 >=0
\(\Rightarrow\)Không tìm được a,b,c
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) => \(\frac{2a}{4}=\frac{3b}{9}=\frac{5c}{20}=\frac{2a+3b-5c}{4+9-20}=\frac{-28}{-7}=4\)
=> \(\hept{\begin{cases}\frac{a}{2}=4\\\frac{b}{3}=4\\\frac{c}{4}=4\end{cases}}\) => \(\hept{\begin{cases}a=4.2=8\\b=4.3=12\\c=4.4=16\end{cases}}\)
Vậy ...
Vì \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
\(\Rightarrow\frac{2a}{4}=\frac{3b}{9}=\frac{5c}{20}=\frac{2a+3b-5c}{4+9-20}=\frac{-28}{-7}=4\)( áp dụng ...)
Làm tính nốt
1) Ta có: \(\frac{a}{3}=\frac{b}{4}\)
\(\Leftrightarrow\frac{a}{15}=\frac{b}{20}\)(1)
Ta có: \(\frac{b}{5}=\frac{c}{7}\)
\(\Leftrightarrow\frac{b}{20}=\frac{c}{28}\)(2)
Từ (1) và (2) suy ra \(\frac{a}{15}=\frac{b}{20}=\frac{c}{28}\)
\(\Leftrightarrow\frac{2a}{30}=\frac{3b}{60}=\frac{c}{28}\)
mà 2a+3b-c=186
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{2a}{30}=\frac{3b}{60}=\frac{c}{28}=\frac{2a+3b-c}{30+60-28}=\frac{186}{62}=3\)
Do đó:
\(\left\{{}\begin{matrix}\frac{2a}{30}=3\\\frac{3b}{60}=3\\\frac{c}{28}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=90\\3b=180\\c=84\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=45\\b=60\\c=84\end{matrix}\right.\)
Vậy: (a,b,c)=(45;60;84)
2) Ta có: \(\frac{a}{3}=\frac{b}{4}\)
\(\Leftrightarrow\frac{a}{9}=\frac{b}{12}\)(3)
Ta có: \(\frac{b}{3}=\frac{c}{5}\)
\(\Leftrightarrow\frac{b}{12}=\frac{c}{20}\)(4)
Từ (3) và (4) suy ra \(\frac{a}{9}=\frac{b}{12}=\frac{c}{20}\)
\(\Leftrightarrow\frac{2a}{18}=\frac{3b}{36}=\frac{c}{20}\)
mà 2a-3b+c=6
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{2a}{18}=\frac{3b}{36}=\frac{c}{20}=\frac{2a-3b+c}{18-36+20}=\frac{6}{2}=3\)
Do đó:
\(\left\{{}\begin{matrix}\frac{2a}{18}=3\\\frac{3b}{36}=3\\\frac{c}{20}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=54\\3b=108\\c=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=27\\b=36\\c=60\end{matrix}\right.\)
Vậy: (a,b,c)=(27;36;60)