K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2017

a)  B = \(\frac{\left(a+3\right)^2}{2a^2+6a}\)\(\left(1-\frac{6a-18}{a^2-9}\right)\)

\(\frac{\left(a+3\right)^2}{2a\left(a+3\right)}\)\(\left(1-\frac{6\left(a-3\right)}{\left(a-3\right)\left(a+3\right)}\right)\)

\(\frac{a+3}{2a}\).  \(\left(1-\frac{6}{a+3}\right)\)

\(\frac{a+3}{2a}\)\(\frac{a+3-6}{a+3}\)

=   \(\frac{a+3}{2a}\).  \(\frac{a-3}{a+3}\)

\(\frac{a-3}{2a}\)

b)    B =  \(\frac{a-3}{2a}\)= 1

\(\Leftrightarrow\)\(a-3=2a\)

\(\Leftrightarrow\)\(a=-3\)

Vậy khi B = 1  thì   a = -3

15 tháng 12 2016

a)

2a^2+6a=2a(a+3)  khác 0=> a khác 0 và a khác -3

a^2-9=(a-3)(a+3) khác 0=> a khác -3 và a khác 3

tỏng hợp a \(\ne\) {-3,0,3}

b)\(B=\frac{\left(a+3\right)^2}{2a\left(a+3\right)}\cdot\frac{\left(a^2-9\right)-6a+18}{\left(a-3\right)\left(a+3\right)}=\frac{\left(a+3\right)^2.\left(a-3\right)^2}{2a.\left(a-3\right)\left(a+3\right)^2}=\frac{a-3}{2a}\)

c)B=0\(\frac{\left(a-3\right)}{2a}=0=>a=3\Rightarrow\left(loai\right)\) kết luận ko có giá trị nào  a ;B =0

d)\(B=1\Rightarrow\left(a-3\right)=2a\Rightarrow a=-3\left(loai\right)\)không có giá trị nào của a cho B=1

24 tháng 12 2016

a) B xác định

\(\Leftrightarrow\begin{cases}2a^2+6a\ne0\\a^2-9\ne0\end{cases}\Leftrightarrow\begin{cases}2a\left(a+3\right)\ne0\\\left(a+3\right)\left(a-3\right)\ne0\end{cases}\Leftrightarrow\begin{cases}a\ne0\\a\ne-3\\a\ne3\end{cases}\)

Vậy để B xác định thì \(a\ne0\)\(a\ne\pm3\)

b) \(B=\frac{\left(a+3\right)^2}{2a^2+6a}\cdot\left(1-\frac{6a-18}{a^2-9}\right)\)

\(=\frac{\left(a+3\right)^2}{2a\left(a+3\right)}\cdot\frac{\left(a+3\right)\left(a-9\right)}{\left(a+3\right)\left(a-3\right)}\)

\(=\frac{a+3}{2a}\cdot\frac{a-9}{a+3}\)

\(=\frac{a-9}{2a}\)

 

8 tháng 12 2017

a) ĐKXĐ: \(\left\{{}\begin{matrix}2a^2+6a\ne0\\a^2-9\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2a\left(a+3\right)\ne0\\\left(a-3\right)\left(a+3\right)\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2a\ne0\\a-3\ne0\\a+3\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a\ne0\\a\ne3\\a\ne-3\end{matrix}\right.\)

b) \(B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\left(1-\dfrac{6a-18}{a^2-9}\right)\)

\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\left(\dfrac{a^2-9}{a^2-9}-\dfrac{6a-18}{a^2-9}\right)\)

\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\dfrac{\left(a^2-9\right)-\left(6a-18\right)}{a^2-9}\)

\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\dfrac{a^2-9-6a+18}{a^2-9}\)

\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\dfrac{a^2-6a+9}{a^2-9}\)

\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\dfrac{\left(a-3\right)^2}{a^2-9}\)

\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a\left(a+3\right)}.\dfrac{\left(a-3\right)^2}{\left(a-3\right)\left(a+3\right)}\)

\(\Leftrightarrow B=\dfrac{a+3}{2a}.\dfrac{a-3}{a+3}\)

\(\Leftrightarrow B=\dfrac{\left(a+3\right)\left(a-3\right)}{2a\left(a+3\right)}\)

\(\Leftrightarrow B=\dfrac{a-3}{2a}\)

21 tháng 12 2019

a) \(A=\left(\frac{2}{2a-b}+\frac{6b}{b^2-4a^2}-\frac{4}{2a+b}\right):\left(a+\frac{4a^2+b^2}{4a^2-b^2}\right)\)

\(=\left(\frac{2}{2a-b}+\frac{6b}{\left(b-2a\right)\left(b+2a\right)}-\frac{4}{2a+b}\right):\left(a+\frac{4a^2+b^2}{4a^2-b^2}\right)\)

\(=\left(\frac{-2\left(b+2a\right)}{\left(b-2a\right)\left(b+2a\right)}+\frac{6b}{\left(b-2a\right)\left(b+2a\right)}-\frac{4\left(b-2a\right)}{\left(2a+b\right)\left(b-2a\right)}\right):\left(\frac{a\left(4a^2-b^2\right)}{4a^2-b^2}+\frac{4a^2+b^2}{4a^2-b^2}\right)\)

\(=\frac{-2b-4a+6b-4b+8a}{\left(b-2a\right)\left(b+2a\right)}:\frac{4a^3-ab^2+4a^2+b^2}{4a^2-b^2}\)

\(=\frac{4a}{\left(b-2a\right)\left(b+2a\right)}.\frac{\left(2a-b\right)\left(2a+b\right)}{4a^3-ab^2+4a^2+b^2}\)

\(=\frac{-4a}{\left(2a-b\right)\left(b+2a\right)}.\frac{\left(2a-b\right)\left(2a+b\right)}{4a^3-ab^2+4a^2+b^2}\)

\(=.\frac{-4a}{4a^3-ab^2+4a^2+b^2}\)

b)  ĐKXĐ: \(\hept{\begin{cases}2a\ne b\\2a\ne-b\end{cases}}\)

Ta thấy \(a=\frac{1}{3};b=2\)thỏa mãn điều kiện \(\hept{\begin{cases}2a\ne b\\2a\ne-b\end{cases}}\)nên thay vào A ta được:

bạn thay vào tự tính nhé mà cái phần rút gọn bạn vừa làm vừa check giùm bài mik nhé =)) sợ sai 

7 tháng 9 2015

a, \(\frac{a\left(b+1\right)-b-1}{b\left(a-1\right)+a-1}=\frac{a\left(b+1\right)-\left(b+1\right)}{b\left(a-1\right)+\left(a-1\right)}=\frac{\left(b+1\right)\left(a-1\right)}{\left(b+1\right)\left(a-1\right)}=1\) 

b, \(\frac{2a+2ab-b-1}{3b\left(2a-1\right)+6a-3}=\frac{2a\left(b+1\right)-\left(b+1\right)}{3b\left(2a-1\right)+3\left(2a-1\right)}=\frac{\left(b+1\right)\left(2a-1\right)}{\left(2a-1\right)\left(b+1\right)3}=\frac{1}{3}\)

29 tháng 12 2017

Sửa lại đề bài:  1 / 2a- b 

                   ( MÁY MK KO ĐÁNH ĐC PHÂN SỐ MONG BN THÔNG CẢM)

mới lm đc nhé bn! 

a) ĐKXĐ: bn tự lm nhé ! 

bn biến đổi: 2a3-b+2a-a2b =  (2a-b)  + ( 2a3-a2b) = (2a-b) + a2(2a-b) = (2a-b)(a2+1) 

rồi bn nhân 1 / 2a+b với a2+1 rồi trừ 2 phân thức với nhau sẽ ra 0 => A=0

29 tháng 12 2017

Bạn nào giúp tớ với!

27 tháng 9 2020

a) \(ĐK:a\ne1;a\ne0\)

\(A=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}=\left[\frac{a^2-2a+1}{a^2+a+1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}\)\(=\left[\frac{a^3-3a^2+3a-1}{a^3-1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}=\frac{a^3-1}{a^3-1}.\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)

b) Ta có: \(a^2+4\ge4a\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(a-2\right)^2\ge0\)

Khi đó \(\frac{4a}{a^2+4}\le1\)

Vậy MaxA = 1 khi x = 2

27 tháng 9 2020

•๖ۣۜIηεqυαℓĭтĭεʂ•ッᶦᵈᵒᶫ★T&T★ Idol cho em hỏi là, cái chỗ \(\left(a-2\right)^2\ge0\) thì tại sao Khi đó: \(\frac{4a}{a^2+4}\le1\)

Mong Idol pro giải thích hộ em chỗ này :((