Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa lại đề bài: 1 / 2a- b
( MÁY MK KO ĐÁNH ĐC PHÂN SỐ MONG BN THÔNG CẢM)
mới lm đc nhé bn!
a) ĐKXĐ: bn tự lm nhé !
bn biến đổi: 2a3-b+2a-a2b = (2a-b) + ( 2a3-a2b) = (2a-b) + a2(2a-b) = (2a-b)(a2+1)
rồi bn nhân 1 / 2a+b với a2+1 rồi trừ 2 phân thức với nhau sẽ ra 0 => A=0
a) B = \(\frac{\left(a+3\right)^2}{2a^2+6a}\). \(\left(1-\frac{6a-18}{a^2-9}\right)\)
= \(\frac{\left(a+3\right)^2}{2a\left(a+3\right)}\). \(\left(1-\frac{6\left(a-3\right)}{\left(a-3\right)\left(a+3\right)}\right)\)
= \(\frac{a+3}{2a}\). \(\left(1-\frac{6}{a+3}\right)\)
= \(\frac{a+3}{2a}\). \(\frac{a+3-6}{a+3}\)
= \(\frac{a+3}{2a}\). \(\frac{a-3}{a+3}\)
= \(\frac{a-3}{2a}\)
b) B = \(\frac{a-3}{2a}\)= 1
\(\Leftrightarrow\)\(a-3=2a\)
\(\Leftrightarrow\)\(a=-3\)
Vậy khi B = 1 thì a = -3
\(\left(\frac{1}{2a-b}+\frac{3b}{b^2-4a^2}-\frac{2}{2a+b}\right):\left(1+\frac{4a^2+b^2}{4a^2-b^2}\right)\left(ĐK:2a\ne\pm b\right)\)
\(=\left(\frac{1}{2a-b}-\frac{3b}{\left(2b-b\right)\left(2a+b\right)}-\frac{2}{2a+b}\right):\frac{4a^2-b^2+4a^2+b^2}{\left(2a-b\right)\left(2a+b\right)}\)
\(=\frac{2a+b-3b-2\left(2a-b\right)}{\left(2a-b\right)\left(2a+b\right)}\cdot\frac{\left(2a-b\right)\left(2a+b\right)}{8a^2}\)
\(=\frac{2a+b-3b-4a+2b}{8a^2}=\frac{-2a}{8a^2}=-\frac{1}{4a}\)
a) B xác định
\(\Leftrightarrow\begin{cases}2a^2+6a\ne0\\a^2-9\ne0\end{cases}\Leftrightarrow\begin{cases}2a\left(a+3\right)\ne0\\\left(a+3\right)\left(a-3\right)\ne0\end{cases}\Leftrightarrow\begin{cases}a\ne0\\a\ne-3\\a\ne3\end{cases}\)
Vậy để B xác định thì \(a\ne0\) và \(a\ne\pm3\)
b) \(B=\frac{\left(a+3\right)^2}{2a^2+6a}\cdot\left(1-\frac{6a-18}{a^2-9}\right)\)
\(=\frac{\left(a+3\right)^2}{2a\left(a+3\right)}\cdot\frac{\left(a+3\right)\left(a-9\right)}{\left(a+3\right)\left(a-3\right)}\)
\(=\frac{a+3}{2a}\cdot\frac{a-9}{a+3}\)
\(=\frac{a-9}{2a}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}2a^2+6a\ne0\\a^2-9\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2a\left(a+3\right)\ne0\\\left(a-3\right)\left(a+3\right)\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2a\ne0\\a-3\ne0\\a+3\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a\ne0\\a\ne3\\a\ne-3\end{matrix}\right.\)
b) \(B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\left(1-\dfrac{6a-18}{a^2-9}\right)\)
\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\left(\dfrac{a^2-9}{a^2-9}-\dfrac{6a-18}{a^2-9}\right)\)
\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\dfrac{\left(a^2-9\right)-\left(6a-18\right)}{a^2-9}\)
\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\dfrac{a^2-9-6a+18}{a^2-9}\)
\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\dfrac{a^2-6a+9}{a^2-9}\)
\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\dfrac{\left(a-3\right)^2}{a^2-9}\)
\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a\left(a+3\right)}.\dfrac{\left(a-3\right)^2}{\left(a-3\right)\left(a+3\right)}\)
\(\Leftrightarrow B=\dfrac{a+3}{2a}.\dfrac{a-3}{a+3}\)
\(\Leftrightarrow B=\dfrac{\left(a+3\right)\left(a-3\right)}{2a\left(a+3\right)}\)
\(\Leftrightarrow B=\dfrac{a-3}{2a}\)
Câu 1:
\(A=\frac{x\left(1-x^2\right)}{1+x^2}:\left[\left(\frac{\left(1-x\right)\left(x^2+x+1\right)}{1-x}+x\right)\left(\frac{\left(1+x\right)\left(x^2-x+1\right)}{1+x}+x\right)\right]\)
\(=\frac{x\left(1-x^2\right)}{x^2+1}:\left[\left(x^2+2x+1\right)\left(x^2-2x+1\right)\right]\)
\(=\frac{x\left(1-x^2\right)}{\left(1+x^2\right)\left(1+x\right)^2\left(x-1\right)^2}=\frac{x}{\left(1+x^2\right)\left(x^2-1\right)}=\frac{x}{x^4-1}\)
Câu 2: thay x vào A có :
\(A=\frac{-\frac{1}{2}}{\frac{1}{4}-1}=\frac{2}{3}\)
Câu c :
2A=1 => \(\frac{x}{x^4-1}=\frac{1}{2}\)ĐK \(\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)
\(\Leftrightarrow x^4-2x-1=0\Leftrightarrow\left(x+1\right)\left(x^3-x^2+x-1\right)=0\)
\(\left(x+1\right)\left(x^2+1\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)loại do điều kiện vậy ko có giá trị nào của x thỏa mãn
\(=\left[\dfrac{\left(a-1\right)^2}{a^2+a+1}+\dfrac{2a^2-4a-1}{\left(a-1\right)\left(a^2+a+1\right)}+\dfrac{1}{a-1}\right]:\dfrac{2a}{3}\)
\(=\dfrac{a^3-3a^2+3a-1+2a^2-4a-1+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{3}{2a}\)
\(=\dfrac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{3}{2a}=\dfrac{3}{2a}\)
a) \(A=\left(\frac{2}{2a-b}+\frac{6b}{b^2-4a^2}-\frac{4}{2a+b}\right):\left(a+\frac{4a^2+b^2}{4a^2-b^2}\right)\)
\(=\left(\frac{2}{2a-b}+\frac{6b}{\left(b-2a\right)\left(b+2a\right)}-\frac{4}{2a+b}\right):\left(a+\frac{4a^2+b^2}{4a^2-b^2}\right)\)
\(=\left(\frac{-2\left(b+2a\right)}{\left(b-2a\right)\left(b+2a\right)}+\frac{6b}{\left(b-2a\right)\left(b+2a\right)}-\frac{4\left(b-2a\right)}{\left(2a+b\right)\left(b-2a\right)}\right):\left(\frac{a\left(4a^2-b^2\right)}{4a^2-b^2}+\frac{4a^2+b^2}{4a^2-b^2}\right)\)
\(=\frac{-2b-4a+6b-4b+8a}{\left(b-2a\right)\left(b+2a\right)}:\frac{4a^3-ab^2+4a^2+b^2}{4a^2-b^2}\)
\(=\frac{4a}{\left(b-2a\right)\left(b+2a\right)}.\frac{\left(2a-b\right)\left(2a+b\right)}{4a^3-ab^2+4a^2+b^2}\)
\(=\frac{-4a}{\left(2a-b\right)\left(b+2a\right)}.\frac{\left(2a-b\right)\left(2a+b\right)}{4a^3-ab^2+4a^2+b^2}\)
\(=.\frac{-4a}{4a^3-ab^2+4a^2+b^2}\)
b) ĐKXĐ: \(\hept{\begin{cases}2a\ne b\\2a\ne-b\end{cases}}\)
Ta thấy \(a=\frac{1}{3};b=2\)thỏa mãn điều kiện \(\hept{\begin{cases}2a\ne b\\2a\ne-b\end{cases}}\)nên thay vào A ta được:
bạn thay vào tự tính nhé mà cái phần rút gọn bạn vừa làm vừa check giùm bài mik nhé =)) sợ sai
a, \(\frac{a\left(b+1\right)-b-1}{b\left(a-1\right)+a-1}=\frac{a\left(b+1\right)-\left(b+1\right)}{b\left(a-1\right)+\left(a-1\right)}=\frac{\left(b+1\right)\left(a-1\right)}{\left(b+1\right)\left(a-1\right)}=1\)
b, \(\frac{2a+2ab-b-1}{3b\left(2a-1\right)+6a-3}=\frac{2a\left(b+1\right)-\left(b+1\right)}{3b\left(2a-1\right)+3\left(2a-1\right)}=\frac{\left(b+1\right)\left(2a-1\right)}{\left(2a-1\right)\left(b+1\right)3}=\frac{1}{3}\)