Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
2a^2+6a=2a(a+3) khác 0=> a khác 0 và a khác -3
a^2-9=(a-3)(a+3) khác 0=> a khác -3 và a khác 3
tỏng hợp a \(\ne\) {-3,0,3}
b)\(B=\frac{\left(a+3\right)^2}{2a\left(a+3\right)}\cdot\frac{\left(a^2-9\right)-6a+18}{\left(a-3\right)\left(a+3\right)}=\frac{\left(a+3\right)^2.\left(a-3\right)^2}{2a.\left(a-3\right)\left(a+3\right)^2}=\frac{a-3}{2a}\)
c)B=0\(\frac{\left(a-3\right)}{2a}=0=>a=3\Rightarrow\left(loai\right)\) kết luận ko có giá trị nào a ;B =0
d)\(B=1\Rightarrow\left(a-3\right)=2a\Rightarrow a=-3\left(loai\right)\)không có giá trị nào của a cho B=1
a) B = \(\frac{\left(a+3\right)^2}{2a^2+6a}\). \(\left(1-\frac{6a-18}{a^2-9}\right)\)
= \(\frac{\left(a+3\right)^2}{2a\left(a+3\right)}\). \(\left(1-\frac{6\left(a-3\right)}{\left(a-3\right)\left(a+3\right)}\right)\)
= \(\frac{a+3}{2a}\). \(\left(1-\frac{6}{a+3}\right)\)
= \(\frac{a+3}{2a}\). \(\frac{a+3-6}{a+3}\)
= \(\frac{a+3}{2a}\). \(\frac{a-3}{a+3}\)
= \(\frac{a-3}{2a}\)
b) B = \(\frac{a-3}{2a}\)= 1
\(\Leftrightarrow\)\(a-3=2a\)
\(\Leftrightarrow\)\(a=-3\)
Vậy khi B = 1 thì a = -3
\(B=\dfrac{\left(a+3\right)^2}{2a^2+6a}\cdot\dfrac{1-6a-18}{a^2-9}\\ a,ĐK:a\ne0;a\ne\pm3\\ b,B=\dfrac{\left(a+3\right)^2}{2a\left(a+3\right)}\cdot\dfrac{-17-6a}{\left(a-3\right)\left(a+3\right)}=\dfrac{-17-6a}{2a\left(a-3\right)}\\ c,B=0\Leftrightarrow-17-6a=0\Leftrightarrow a=-\dfrac{17}{6}\left(tm\right)\\ d,B=1\Leftrightarrow-17-6a=2a^2-6a\\ \Leftrightarrow2a^2=-17\Leftrightarrow a\in\varnothing\)
a)
Để B được xác định khi:
*\(2a^2+6a\ne0\Rightarrow2a\left(a+3\right)\ne0\)
=>\(a\ne0\) và \(a+3\ne0\Rightarrow a\ne-3\)
*a2-9\(\ne\)0
=>(a+9)(a-9)\(\ne\)0
=> a+9\(\ne\)0 và a-9\(\ne\)0
=> a \(\ne\)-9 và a\(\ne\)9
Vậy để B được xác định khi a\(\in\){-9;-3;0;9}
b)
\(\dfrac{\left(a+3\right)^2}{2a^2+6a}\cdot\left(1-\dfrac{6a-18}{a^2-9}\right)\)
=\(\dfrac{\left(a+3\right)^2}{2a\left(a+3\right)}.\left(1-\dfrac{6\left(a-3\right)}{\left(a-3\right)\left(a+3\right)}\right)\)
=\(\dfrac{a+3}{2a}\cdot\left(1-\dfrac{6}{a+3}\right)\)
=\(\dfrac{a+3}{2a}\cdot\left(\dfrac{a+3-6}{a+3}\right)\)
=\(\dfrac{a+3}{2a}\dfrac{a-3}{a+3}\)
=\(\dfrac{a-3}{2a}\)
c) Ta có B=0
=>\(\dfrac{a-3}{2a}=0\\ \Rightarrow a-3=0\\ \Rightarrow a=3\)
Vậy B=0 khi a=3
d)Ta có B=1
\(\Rightarrow\dfrac{a-3}{2a}=1\\ \Rightarrow a-3=2a\\ \Rightarrow a-2a=3\\ \Rightarrow-a=3\\ \Rightarrow a=-3\left(KTMDK\right)\)
a)
Để B được xác định khi:
*2a2+6a≠0⇒2a(a+3)≠02a2+6a≠0⇒2a(a+3)≠0
=>a≠0a≠0 và a+3≠0⇒a≠−3a+3≠0⇒a≠−3
*a2-9≠≠0
=>(a+9)(a-9)≠≠0
=> a+9≠≠0 và a-9≠≠0
=> a ≠≠-9 và a≠≠9
Vậy để B được xác định khi a∈∈{-9;-3;0;9}
b)
(a+3)22a2+6a⋅(1−6a−18a2−9)(a+3)22a2+6a⋅(1−6a−18a2−9)
=(a+3)22a(a+3).(1−6(a−3)(a−3)(a+3))(a+3)22a(a+3).(1−6(a−3)(a−3)(a+3))
=a+32a⋅(1−6a+3)a+32a⋅(1−6a+3)
=a+32a⋅(a+3−6a+3)a+32a⋅(a+3−6a+3)
=a+32aa−3a+3a+32aa−3a+3
=a−32aa−32a
c) Ta có B=0
=>a−32a=0⇒a−3=0⇒a=3a−32a=0⇒a−3=0⇒a=3
Vậy B=0 khi a=3
d)Ta có B=1
⇒a−32a=1
a) B xác định
\(\Leftrightarrow\begin{cases}2a^2+6a\ne0\\a^2-9\ne0\end{cases}\Leftrightarrow\begin{cases}2a\left(a+3\right)\ne0\\\left(a+3\right)\left(a-3\right)\ne0\end{cases}\Leftrightarrow\begin{cases}a\ne0\\a\ne-3\\a\ne3\end{cases}\)
Vậy để B xác định thì \(a\ne0\) và \(a\ne\pm3\)
b) \(B=\frac{\left(a+3\right)^2}{2a^2+6a}\cdot\left(1-\frac{6a-18}{a^2-9}\right)\)
\(=\frac{\left(a+3\right)^2}{2a\left(a+3\right)}\cdot\frac{\left(a+3\right)\left(a-9\right)}{\left(a+3\right)\left(a-3\right)}\)
\(=\frac{a+3}{2a}\cdot\frac{a-9}{a+3}\)
\(=\frac{a-9}{2a}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}2a^2+6a\ne0\\a^2-9\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2a\left(a+3\right)\ne0\\\left(a-3\right)\left(a+3\right)\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2a\ne0\\a-3\ne0\\a+3\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a\ne0\\a\ne3\\a\ne-3\end{matrix}\right.\)
b) \(B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\left(1-\dfrac{6a-18}{a^2-9}\right)\)
\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\left(\dfrac{a^2-9}{a^2-9}-\dfrac{6a-18}{a^2-9}\right)\)
\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\dfrac{\left(a^2-9\right)-\left(6a-18\right)}{a^2-9}\)
\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\dfrac{a^2-9-6a+18}{a^2-9}\)
\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\dfrac{a^2-6a+9}{a^2-9}\)
\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\dfrac{\left(a-3\right)^2}{a^2-9}\)
\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a\left(a+3\right)}.\dfrac{\left(a-3\right)^2}{\left(a-3\right)\left(a+3\right)}\)
\(\Leftrightarrow B=\dfrac{a+3}{2a}.\dfrac{a-3}{a+3}\)
\(\Leftrightarrow B=\dfrac{\left(a+3\right)\left(a-3\right)}{2a\left(a+3\right)}\)
\(\Leftrightarrow B=\dfrac{a-3}{2a}\)