K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2023

Với phương trình: \(x^2+mx+n=0\)

delta 1 = \(m^2-4n\) (1)

Với phương trình: \(x^2-2x-n=0\)

delta 2 = \(\left(-2\right)^2-4.\left(-n\right)=4+4n\) (2)

Lấy (1) + (2) được \(m^2+4>0\forall m,n\)

=> delta 1 hoặc 2 luôn có ít nhất một delta không âm hay:

Với mọi giá trị của m và n thì ít nhất một trong hai phương trình trên có nghiệm.

T.Lam

19 tháng 4 2023

bài này Còn cách giải khác không ạ ? 

29 tháng 11 2018

Gọi \(\Delta_1\)là biệt thức của pt \(x^2+mx+n=0\)

     \(\Delta_2\)là biệt thức của pt \(x^2-2x-n=0\)

Ta có : \(\Delta_1+\Delta_2=\left(m^2-4n\right)+\left(4+4n\right)\)

                           \(=m^2+4>0\forall m\)

Nên tồn tại 1 trong 2 delta phải lớn hơn 0

=> 1 trong 2 pt đã cho có nghiệm với mọi m và n

Vậy .......

5 tháng 4 2017

b/ \(\hept{\begin{cases}x^2+px+1=0\\x^2+qx+1=0\end{cases}}\)

Theo vi et ta có

\(\hept{\begin{cases}a+b=-p\\ab=1\end{cases}}\) và  \(\hept{\begin{cases}c+d=-q\\cd=1\end{cases}}\)

Ta có: \(\left(a-c\right)\left(b-c\right)\left(a-d\right)\left(b-d\right)\)

\(=\left(c^2-c\left(a+b\right)+ab\right)\left(d^2-d\left(a+b\right)+ab\right)\)

\(=\left(c^2+cp+1\right)\left(d^2+dp+1\right)\)

\(=cdp^2+pcd\left(c+d\right)+p\left(c+d\right)+c^2d^2+\left(c+d\right)^2-2cd+1\)

\(=p^2-pq-pq+1+q^2-2+1\)

\(=p^2-2pq+q^2=\left(p-q\right)^2\)

5 tháng 4 2017

a/ \(\hept{\begin{cases}x^2+2mx+mn-1=0\left(1\right)\\x^2-2nx+m+n=0\left(2\right)\end{cases}}\)

Ta có: \(\Delta'_1+\Delta'_2=\left(m^2-mn+1\right)+\left(n^2-m-n\right)\)

\(=m^2+n^2-mn-m-n+1\)

\(=\left(\frac{m^2}{2}-mn+\frac{n^2}{2}\right)+\left(\frac{m^2}{2}-m+\frac{1}{2}\right)+\left(\frac{n^2}{2}-n+\frac{1}{2}\right)\)

\(=\frac{1}{2}\left(\left(m-n\right)^2+\left(m-1\right)^2+\left(n-1\right)^2\right)\ge0\)

Vậy có 1 trong 2 phương trình có nghiệm

9 tháng 8 2017

a. Với \(m=1;n=\sqrt{2}\)thay vào phương trình ta có 

\(x^2+\left(\sqrt{2}+1\right)x+\sqrt{2}=0\Leftrightarrow x\left(x+\sqrt{2}\right)+\left(x+\sqrt{2}\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+\sqrt{2}\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-\sqrt{2}\end{cases}}\)

Vậy với \(m=1;n=\sqrt{2}\)thì phương trình có 2 nghiệm \(x=-1;x=-\sqrt{2}\)

b. Ta có \(\Delta=\left(mn+1\right)^2-4mn=m^2n^2+2mn+1-4mn=m^2n^2-2mn+1\)

\(=\left(mn-1\right)^2>0\forall m,n\)

Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m;n

21 tháng 4 2020

Gọi x0 là nghiệm chung của 2 phương trình

Ta có:\(x_0^2+ax_0+bc=0;x_0^2+bx_0+ca=0\)

\(\Rightarrow\left(a-b\right)x_0=c\left(a-b\right)\)

Mà \(a\ne b\Rightarrow x_0=c\)

Gọi các nghiệm của phương trình x2 +ax + bc = 0 và x2 + bx + ac = 0 là x1 và x2

Theo Viet ta có:\(x_0x_1=bc;x_0x_2=ca\)

Mà \(x_0=c\ne0\Rightarrow x_1=b;x_2=a\)

Do b;c là các nghiệm của phương trình x2 +ax + bc = 0 nên b+c=-a => -c=a+b => a,b là các nghiệm của phương trình:

x2 - ( a+b ) x + ab = 0 hay x2 + cx + ab = 0

16 tháng 4 2017
1, (delta)' = (-m)^2 - (m^2 - 4) = m^2 - m^2 + 4 = 4 => Ptr (1) luôn có nghiệm với mọi m 2, Với mọi m ptr (1) có 2 nghiệm x1,x2 Theo hộ thức Vi-ét ta có x1 + x2 = - b/a = -(-2m)/1 = 2m x1*x2 = c/a =(m^2 - 4)/1= m^2 - 4 Theo bài ra ta có x1^2 + x2^2 = 26 <=> (x1+x2)^2 - 2*x1*x2 = 26 <=> (2m)^2 - 2*(m^2 - 4) = 26 <=> 4m^2 - 2m^2 - 8 = 26 <=> 2m^2 - 8 - 26 = 0 <=> 2(m^2 - 17) = 0 <=> m^2 - 17 = 0 <=> (m - căn17)(m + căn17) = 0 <=> m = căn17 hoặc m = -(căn17) (Sr ko nhìu tg nên mk ko sd kí hiệu)
9 tháng 5 2018

Ta có:        \(\frac{1}{m}+\frac{1}{n}=\frac{1}{2}\)

\(\Rightarrow\frac{m+n}{mn}=\frac{1}{2}\)

\(\Leftrightarrow mn=2\left(m+n\right)\)

\(\Rightarrow2mn=4\left(m+n\right)\)

Từ Phương trình 1 lập \(\Delta_1\)

\(\Delta_1=m^2-4n\)

Phương trình 2 có \(\Delta_2=n^2-4m\)

lấy \(\Delta_1+\Delta_2\)

\(=m^2+n^2-4m-4n\)

\(=m^2-4\left(m+n\right)+n^2\)

\(=m^2-2mn+n^2\)

\(=\left(m-n\right)^2\ge0\)

vậy tồn tại delta1 hoặc delta 2 dương nên một trong 2 phương trình đã cho có ít nhất 1 phương trình có nghiệm

31 tháng 12 2017

ta có phương trình x^2 +3x +m =0 

nên để pt có 2 nghiệm phân biệt thì 9 - 4m > 0 hay m <9/4

theo Viét  nếu x1 và x2 là 2 nghiệm của pt thì 

x1 +x2 =-3 (1)và

x1*x2=m  => 2x1*x2 =2m (2)

=> x1^2 +x2^2 +2m = (x1 +x2 )^2 (từ (1) và (2) )( cái hằng đẳng thức chắc bạn phải biết r đúng ko )

mà x1 +x2 =-3 ,,,x1^2 +x2^2 = 31 nên ta có

31 +2m =9 

m = -11

31 tháng 12 2017

vưa nãy mình -   nhầm 31 + 2m =9  thì m= -12 mới phải (hi  hi )