\(\frac{x^2-2\left(2m-3\right)x+4m-3}{-x^2+4x-5}< 0\) có tập nghiệm là tập số thự...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
31 tháng 5 2020

\(-x^2+4x-5=-\left(x-2\right)^2-1< 0;\forall x\)

Do đó BPT tương đương:

\(x^2-2\left(2m-3\right)x+4m-3>0\)

Do \(a=1>0\) nên để tập nghiệm BPT là R

\(\Leftrightarrow\Delta'=\left(2m-3\right)^2-\left(4m-3\right)< 0\)

\(\Leftrightarrow4m^2-16m+12< 0\)

\(\Rightarrow1< m< 3\Rightarrow b-3a=3-3.1=0\)

NV
17 tháng 6 2020

Do \(-x^2+4x-5=-\left(x-2\right)^2-1< 0;\forall x\)

Nên BPT tương đương:

\(x^2-2\left(2m-3\right)x+4m-3>0\)

Để BPT đúng với mọi x:

\(\Leftrightarrow\Delta'=\left(2m-3\right)^2-\left(4m-3\right)< 0\)

\(\Leftrightarrow4m^2-16m+12< 0\Rightarrow1< m< 3\)

\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=3\end{matrix}\right.\) bạn tự tìm đáp án đúng

NV
29 tháng 9 2020

\(x^2+2\left(m-3\right)x-4m+8=0\) (1)

\(\Leftrightarrow x^2-6x+8+2m\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)+2m\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4+2m\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-2m+4\end{matrix}\right.\)

Vậy \(Y=\left\{2;-2m+4\right\}\)

Xét pt \(x^2+4x-2m+10=0\left(2\right)\)

a/ Để \(X\cup Y\)có đúng 4 phần tử \(\Leftrightarrow\) (1) và (2) đều có 2 nghiệm pb và ko có nghiệm chung

\(\Leftrightarrow\left\{{}\begin{matrix}-2m+4\ne2\\\Delta'_{\left(2\right)}=4-\left(-2m+10\right)>0\\2^2+4.2-2m+10\ne0\\\left(-2m+4\right)^2+4.\left(-2m+4\right)-2m+10\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m>3\\m\ne11\\\left\{{}\begin{matrix}m\ne\frac{7}{2}\\m\ne3\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>3\\m\ne\left\{\frac{7}{2};11\right\}\end{matrix}\right.\)

NV
29 tháng 9 2020

b/

Để (1) và (2) có (thể có) 2 nghiệm chung

\(\Rightarrow\left\{{}\begin{matrix}2m-6=4\\-4m+8=-2m+10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=5\\m=-1\end{matrix}\right.\) (ko tồn tại m thỏa mãn)

Vậy (1) và (2) luôn có tối đa 1 nghiệm chung

Để (2) có nghiệm \(\Rightarrow\Delta'_{\left(2\right)}\ge0\Rightarrow m\ge3\)

\(X\cap Y\) có 1 phần tử khi và chỉ khi (1) và (2) có 1 nghiệm chung \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2m+4\end{matrix}\right.\) là nghiệm của (2)

TH1: \(x=2\) là nghiệm của (2)

\(\Rightarrow2^2+4.2-2m+10=0\)

\(\Leftrightarrow m=11\)

TH2: \(x=-2m+4\) là nghiệm của (2)

\(\Leftrightarrow\left(-2m+4\right)^2+4\left(-2m+4\right)-2m+10=0\)

\(\Leftrightarrow4m^2-26m+42=0\Leftrightarrow\left[{}\begin{matrix}m=3\\m=\frac{7}{2}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}m=11\\m=3\\m=\frac{7}{2}\end{matrix}\right.\)

1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\) 2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2 3. bất phương trình nào sau đây tương đương với...
Đọc tiếp

1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số

A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\)

2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số

A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2

3. bất phương trình nào sau đây tương đương với bất phương trình x+5>0

A. (x-1)2 (x+5) > 0 B. x2 (x+5) >0

C. \(\sqrt{x+5}\left(x+5\right)\)> 0 D. \(\sqrt{x+5}\left(x-5\right)\)>0

4. bất phương trình ax+b > 0 vô nghiệm khi

A.\(\left\{{}\begin{matrix}a\ne0\\b=0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

5.bất phương trình ax+b>0 có tập nghiệm R khi

A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

6.bất phương trình ax+b \(\le\)0 vô nghiệm khi

A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

7.tập nghiệm S của bất phương trình \(5x-1\ge\frac{2x}{5}+3\)

A. R B. (-∞; 2) C. (-\(\frac{5}{2}\); +∞) D. \([\frac{20}{23}\); +∞\()\)

MONG MỌI NGƯỜI GIẢI CHI TIẾT GIÚP EM Ạ TvT

0
NV
29 tháng 4 2020

ĐKXĐ: \(x\ge\frac{2}{3}\)

\(\Leftrightarrow x^3-1+2x-1-\sqrt{3x-2}+x+1-\sqrt{x+3}\le0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)+\frac{4x^2-7x+3}{2x-1+\sqrt{3x-2}}+\frac{x^2+x-2}{x+1+\sqrt{x+3}}\le0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)+\frac{\left(x-1\right)\left(4x-3\right)}{2x-1+\sqrt{3x-2}}+\frac{\left(x-1\right)\left(x+2\right)}{x+1+\sqrt{x+3}}\le0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1+\frac{4x-3}{2x-1+\sqrt{3x-2}}+\frac{x+2}{x+1+\sqrt{x+3}}\right)\le0\)

\(\Leftrightarrow x-1\le0\) (ngoặc đằng sau luôn dương)

\(\Rightarrow x\le1\Rightarrow\frac{2}{3}\le x\le1\Rightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=1\end{matrix}\right.\) \(\Rightarrow a+b=5\)

11 tháng 4 2020

a/ \(2x^3+x+3>0\Leftrightarrow\left(x+1\right)\left(x^2-2x+3\right)>0\Leftrightarrow x+1>0\) \(\left(x^2-2x+3>0\forall x\in R\right)\)

\(\Leftrightarrow x>-1\)

Nghiệm của $VT(*)$ là $S=(-1;+\infty)$

b/ \(x^2\left(x^2+3x-4\right)\ge0\) $(*)$

$VT(*) có nghiệm kép là $0$ và nghiệm đơn là $1;-4$. Ta có BXD:

- + -4 0 1 + - - + 0 0 0 x VT(*)

Từ BXD suy ra bất phương trình có tập nghiệm $S={0} \cup (-\infty;-4] \cup [1;+\infty)$

11 tháng 4 2020

Khách? Khi mà

1. Biết bất phương trình \(\left\{{}\begin{matrix}x-1< 2x-3\\\frac{5-3x}{2}\le x-3\\3x\le x+5\end{matrix}\right.\) có tập nghiệm là một đoạn [a;b]. Hỏi a+b bằng: A.\(\frac{11}{2}\) B.8 C.\(\frac{9}{2}\) D.\(\frac{47}{10}\) 2. Số nghiệm nguyên của hệ bất phương trình \(\left\{{}\begin{matrix}6x+\frac{5}{7}>4x+7\\\frac{8x+3}{2}< 2x+25\end{matrix}\right.\) là; A.vô số B.4 C.8 ...
Đọc tiếp

1. Biết bất phương trình \(\left\{{}\begin{matrix}x-1< 2x-3\\\frac{5-3x}{2}\le x-3\\3x\le x+5\end{matrix}\right.\) có tập nghiệm là một đoạn [a;b]. Hỏi a+b bằng:

A.\(\frac{11}{2}\) B.8 C.\(\frac{9}{2}\) D.\(\frac{47}{10}\)

2. Số nghiệm nguyên của hệ bất phương trình \(\left\{{}\begin{matrix}6x+\frac{5}{7}>4x+7\\\frac{8x+3}{2}< 2x+25\end{matrix}\right.\) là;

A.vô số B.4 C.8 D.0

3. Tổng tất cả các nghiệm nguyên của bất phương trình \(\left\{{}\begin{matrix}5x-2< 4x+5\\x^2< \left(x+2\right)^2\end{matrix}\right.\) bằng:

A.21 B.27 C.28 D.29

4. Cho bất phương trình \(\left\{{}\begin{matrix}\left(1-x\right)^2\le8-4x+x^2\\\left(x+2\right)^3< x^3+6x^2+13x+9\end{matrix}\right.\)

Tổng số nghiệm nguyên lớn nhất và nghiệm nguyên nhỏ nhất của bất phương trình bằng:

A.2 B.3 C.6 D.7

5. Hệ bất phương trình \(\left\{{}\begin{matrix}2x-1>0\\x-m< 2\end{matrix}\right.\) có nghiệm khi và chỉ khi:

A.m<\(-\frac{3}{2}\) B.m\(\le\)\(-\frac{3}{2}\) C.m>\(-\frac{3}{2}\) D.m\(\ge-\frac{3}{2}\)

XIN GIẢI RA TỰ LUẬN GIÚP EM

2
NV
26 tháng 2 2020

1.

\(\left\{{}\begin{matrix}x>2\\\frac{5}{2}+3\le x+\frac{3}{2}x\\2x\le5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>2\\\frac{5}{2}x\ge\frac{11}{2}\\x\le\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow\frac{11}{5}\le x\le\frac{5}{2}\)

\(\Rightarrow a+b=\frac{11}{5}+\frac{5}{2}=D\)

2.

\(\left\{{}\begin{matrix}6x-4x>7-\frac{5}{7}\\4x-2x< 25-\frac{3}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>\frac{22}{7}\\x< \frac{47}{4}\end{matrix}\right.\)

\(\Rightarrow\frac{22}{7}< x< \frac{47}{4}\Rightarrow x=\left\{4;5...;11\right\}\) có 8 giá trị

NV
26 tháng 2 2020

3.

\(\left\{{}\begin{matrix}5x-4x< 5+2\\x^2< x^2+4x+4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x< 7\\x>-1\end{matrix}\right.\)

\(\Rightarrow-1< x< 7\Rightarrow x=\left\{0;1;...;6\right\}\)

\(\Rightarrow\sum x=1+2+...+6=21\)

4.

\(\left\{{}\begin{matrix}x^2-2x+1\le8-4x+x^2\\x^3+6x^2+12x+8< x^3+6x^2+13x+9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x\le7\\x\ge-1\end{matrix}\right.\) \(\Rightarrow-1\le x\le\frac{7}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}x_{min}=-1\\x_{max}=3\end{matrix}\right.\) \(\Rightarrow S=2\)

5.

\(\left\{{}\begin{matrix}x>\frac{1}{2}\\x< m+2\end{matrix}\right.\)

Hệ đã cho có nghiệm khi và chỉ khi:

\(m+2>\frac{1}{2}\Rightarrow m>-\frac{3}{2}\)

10 tháng 3 2022

d