K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2021

B= m(m-n+1) - n(n+1-m)

= m2 - mn +m - n2 -n + mn

= m2 - (mn - mn) + m-n - n2

= (m-n)(m+n) + (m-n)

= (m-n)(m+n +1)

Thay m= 2/3 ; n= -1/3 vào ta được:

B= (2/3 + 1/3)(2/3 - 1/3+1)

B= 1 . 4/3

B= 4/3

Vậy B=4/3 khi m = 2/3 ; n = -1/3

12 tháng 9 2021

`B = m (m-n+1) - n (n+1-m)`

`->B  =m^2 - mn + m - n^2 - n + mn`

`-> M = m^2 - n^2 + m-n`

`-> M = (m-n)(m+n) + (m-n)`

`->M = (m-n) (m+n+1)`

`->M  =(2/3 +1/3) (2/3 - 1/3+1)`

`-> M = 1 . 4/3 = 4/3`

Vậy `M=4/3`

AH
Akai Haruma
Giáo viên
9 tháng 9 2021

Lần sau bạn lưu ý ghi đề thì ghi cho thật đầy đủ yêu cầu của nó nhé.

Tính B.

Lời giải:

$m=\frac{-2}{3}; n=\frac{-1}{3}\Rightarrow m+n+1=0$

$B=m(m-n+1)-n(n+1-m)=m^2-mn+m-n^2-n+mn$

$=m^2-n^2+m-n=(m-n)(m+n+1)=(m-n).0=0$

 

9 tháng 9 2021

\(B=m^2-mn+m-n^2-n+mn\\ B=m^2+m-n^2-n\\ B=\left(\dfrac{-2}{3}\right)^2-\dfrac{2}{3}-\left(\dfrac{-1}{3}\right)^2+\dfrac{1}{3}\\ B=\dfrac{4}{9}-\dfrac{2}{3}-\dfrac{1}{9}+\dfrac{1}{3}=0\)

9 tháng 9 2021

\(B=m\left(m-n+1\right)-n\left(n+1-m\right)=m\left(m+n+1-2n\right)-n\left(m+n+1-2m\right)=\left(m+n\right)\left(m+n+1\right)-2mn+2mn=\left(m+n\right)\left(\dfrac{-2}{3}-\dfrac{1}{3}+1\right)-4mn=0-0=0\)

20 tháng 9 2021

\(B=m^2-mn+m-n^2-n+mn=m^2-n^2+n-n\\ =\left(m-n\right)\left(m+n+1\right)\\ =\left(-\dfrac{2}{3}+\dfrac{1}{3}\right)\left(-\dfrac{2}{3}-\dfrac{1}{3}+1\right)=-\dfrac{1}{3}\cdot0=0\)

20 tháng 9 2021

\(B=m\left(m-n+1\right)-n\left(n+1-m\right)=m^2-mn+m-n^2-n+mn=m^2-n^2+m-n=\left(m-n\right)\left(m+n\right)+\left(m-n\right)=\left(m-n\right)\left(m+n+1\right)=\left(-\dfrac{2}{3}+\dfrac{1}{3}\right)\left(-\dfrac{2}{3}-\dfrac{1}{3}+1\right)=-\dfrac{1}{3}.0=0\)

18 tháng 7 2018

a) 2n^3 + 2n^2 - 2n^3 - 2n^2 + 6n = 6n chia hết 6

b) 3n - 2n^2 - ( n + 4n^2 - 1 - 4n ) - 1 

= 3n - 2n^2 - n - 4n^2 + 1 + 4n -1

= 6n - 6n^2 chia hết 6

c) m^3 + 8 - m^3 + m^2 - 9 - m^2 - 18

= - 19

18 tháng 7 2018

Bài 1:

\(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n\left(n^2+n-n^2-n+3\right)\)

\(=6n\)\(⋮\)\(6\)
Bài 2:

\(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1\)

\(=3n-2n^2-\left(n+4n^2-1-4n\right)-1\)

\(=6n-6n^2=6\left(n-n^2\right)\)\(⋮\)\(6\)

Bài 3:

\(\left(m^2-2m+4\right)\left(m+2\right)-m^3+\left(m+3\right)\left(m-3\right)-m^2-18\)

\(=m^3+8-m^3+m^2-9-m^2-18\)

\(=-19\)

\(\Rightarrow\)đpcm

1 tháng 5 2017

a)

\(\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\)

\(\Leftrightarrow\dfrac{2-x}{2002}+1=\dfrac{1-x}{2003}+1+\dfrac{-x}{2004}+1\)

\(\Leftrightarrow\dfrac{2004-x}{2002}-\dfrac{2004-x}{2003}-\dfrac{2004-x}{2004}=0\)

\(\Leftrightarrow\left(2004-x\right)\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\right)\)

\(\Leftrightarrow2004-x=0\) (vì \(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\ne0\))

\(\Leftrightarrow x=2004\)

S={2004}