Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
a) 4n+4+3n-6<19
<=> 7n-2<19
<=> 7n<21 <=> n< 3
b) n\(^2\) - 6n + 9 - n\(^2\) + 16\(\leq\)43
-6n+25\(\leq\)43
-6n\(\leq\)18
n\(\geq\)-3
a: \(M=\dfrac{1}{x+1}+\dfrac{3x-2}{\left(x+1\right)\left(x^2-1\right)}\)
\(=\dfrac{x^2-1+3x-2}{\left(x+1\right)\left(x^2-1\right)}=\dfrac{x^2+3x-3}{\left(x+1\right)\left(x^2-1\right)}\)
b: |2x+1|=5
=>2x+1=5 hoặc 2x+1=-5
=>2x=4 hoặc 2x=-6
=>x=2(nhận) hoặc x=-3(nhận)
Khi x=2 thì \(M=\dfrac{4+6-3}{\left(2+1\right)\left(2^2-1\right)}=\dfrac{7}{3\cdot3}=\dfrac{7}{9}\)
Khi x=-3 thì \(M=\dfrac{9-9-3}{\left(-3+1\right)\left(9-1\right)}=\dfrac{-3}{\left(-2\right)\cdot8}=\dfrac{3}{16}\)
Bài 1 :
a) +) \(\dfrac{1}{8}\cdot16^n=2^n\)
\(\Leftrightarrow\dfrac{1}{8}=\dfrac{2^n}{16^n}\)
\(\Rightarrow\dfrac{1}{8}=\dfrac{1}{8}^n\)
Vậy n = 1.
+) \(27< 3^n< 243\)
\(\Leftrightarrow3^3< 3^n< 3^5\)
Vậy n = 4.
Bài 2 : \(\left(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+\dfrac{1}{14\cdot19}+...+\dfrac{1}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)
\(\Leftrightarrow\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{44}-\dfrac{1}{49}\right)\cdot\dfrac{-623}{89}\)
\(\Leftrightarrow\left(\dfrac{1}{4}-\dfrac{1}{49}\right)\cdot\dfrac{-623}{89}=-\dfrac{45}{28}\)
Bài 2 :
chưa hiểu: @Duc Minh
\(\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+..+\dfrac{1}{44.49}\right)=\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}+...-\dfrac{1}{49}\right)\)
1/
A= \(\dfrac{2x+6}{\left(x+3\right)\left(x-2\right)}\) = 0 ;(ĐKXĐ : x ≠ -3; x ≠ 2)
⇔ A = \(\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\) = 0
⇔ A = \(\dfrac{2}{x-2}\) = 0
⇒ x = 2 (loại) ⇒ pt vô nghiệm
Ta có : a-\(\dfrac{1}{a}-2=a^2-2a+1=\left(a-1\right)^2\ge0\)
\(\Rightarrow a-\dfrac{1}{a}\ge2\)
Q(x)=2x2+\(\dfrac{2}{x^2}+3y^2+\dfrac{3}{y^2}+\dfrac{4}{x^2}+\dfrac{5}{y^2}\)
=2(\(x^2+\dfrac{1}{x^2}\)) +3(\(y^2+\dfrac{1}{y^2}\))+(\(\dfrac{4}{x^2}+\dfrac{5}{y^2}\))
\(\ge2.2+3.2+9=19\)
Dấu = xảy ra khi x=y=1
1)\(2a^4+1\ge2a^3+a^2\)
\(\Leftrightarrow2a^4-2a^3-a^2+1\ge0\)
\(\Leftrightarrow\left(a^4-2a^3+a^2\right)+\left(a^4-2a^2+1\right)\ge0\)
\(\Leftrightarrow\left(a^2-a\right)^2+\left(a^2-1\right)^2\ge0\)(luôn đúng)
"="<=>a=1
Ta có:\(2A=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{9\cdot11}\)
\(2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{11}\)
\(2A=1-\dfrac{1}{11}=\dfrac{10}{11}\)
\(B=\left(1+\dfrac{1}{1\cdot3}\right)\left(1+\dfrac{1}{2\cdot4}\right)\cdot...\cdot\left(1+\dfrac{1}{9\cdot11}\right)\)
\(B=\dfrac{4}{1\cdot3}\cdot\dfrac{9}{2\cdot4}\cdot...\cdot\dfrac{100}{9\cdot11}\)
\(B=\dfrac{2\cdot2\cdot3\cdot3\cdot...\cdot10\cdot10}{1\cdot3\cdot2\cdot4\cdot...\cdot9\cdot11}\)
\(B=\dfrac{20}{11}\)
\(\Rightarrow11< 2x< 20\)
\(\Rightarrow x\in\left\{6;7;8;9\right\}\)
\(B=m^2-mn+m-n^2-n+mn\\ B=m^2+m-n^2-n\\ B=\left(\dfrac{-2}{3}\right)^2-\dfrac{2}{3}-\left(\dfrac{-1}{3}\right)^2+\dfrac{1}{3}\\ B=\dfrac{4}{9}-\dfrac{2}{3}-\dfrac{1}{9}+\dfrac{1}{3}=0\)
\(B=m\left(m-n+1\right)-n\left(n+1-m\right)=m\left(m+n+1-2n\right)-n\left(m+n+1-2m\right)=\left(m+n\right)\left(m+n+1\right)-2mn+2mn=\left(m+n\right)\left(\dfrac{-2}{3}-\dfrac{1}{3}+1\right)-4mn=0-0=0\)