Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lim\(\frac{3n^2+n-5}{2n^2+1}\)=lim\(\frac{n^2\left(3+\frac{1}{n}-\frac{5}{n^2}\right)}{n^2\left(2+\frac{1}{n}\right)}\)=\(\frac{3}{2}\)
lim\(\frac{\sqrt{9n^2-n}+1}{4n-2}\)=lim\(\frac{n\sqrt{9-\frac{1}{n}+\frac{1}{n^2}}}{n\left(4-\frac{2}{n}\right)}\)=lim\(\frac{\sqrt{9}}{4}\)=\(\frac{3}{2}\)
Mặt nước trong hồ tựa như chiếc gương bầu dục phản chiếu ánh sáng trên quê hương tôi.
HOK TỐT NHA BN YÊU!
a;Chia n cả tử và mẫu
b;Chia cho n4 mà tử dần đến 0 mẫu dần đến 1 nên lim =0
\(=lim\left(\frac{12n^2+12n+3}{n^2+2n}-\frac{4n^2+4n+1}{n^2+3n+1}\right)=lim\left(\frac{12+\frac{12}{n}+\frac{3}{n^2}}{1+\frac{2}{n}}-\frac{4+\frac{4}{n}+\frac{1}{n^2}}{1+\frac{3}{n}+\frac{1}{n^2}}\right)=\frac{12}{1}-\frac{4}{1}=8\)
lim (x-->0) \(\frac{\sqrt[3]{ax+1}-\sqrt{1-bx}}{x}=2\)
<=> lim ( x-->0) \(\left(\frac{\sqrt[3]{ax+1}-1}{x}+\frac{1-\sqrt{1-bx}}{x}\right)=2\)
<=> lim (x-->0)\(\left(\frac{a}{\sqrt[3]{\left(ax+1\right)^2}+\sqrt[3]{ax+1}+1}+\frac{b}{\sqrt{1-bx}+1}\right)=2\)
<=> \(\frac{a}{3}+\frac{b}{2}=2\)
mà a + 3b = 3
=> a= 3; b = 2
=> A là đáp án sai.
\(=lim\frac{n\sqrt{1+\frac{1}{n}-\frac{1}{n^2}}-n\sqrt{4-\frac{2}{n^2}}}{n\left(1+\frac{3}{n}\right)}=\frac{\sqrt{1+0+0}-\sqrt{4-0}}{1+0}=-1\)
\(=lim\frac{3\left(\frac{3}{7}\right)^n-\frac{1}{4}.\left(\frac{2}{7}\right)^n-5.\left(\frac{1}{7}\right)^n}{3+6.\left(\frac{1}{7}\right)^n}=\frac{3.0-\frac{1}{4}.0-5.0}{3+6.0}=0\)
\(=lim\frac{2n-4}{3n+\sqrt{9n^2-2n+4}}=lim\frac{2-\frac{4}{n}}{3+\sqrt{9-\frac{2}{n}+\frac{4}{n^2}}}=\frac{2}{3+\sqrt{9}}=\frac{1}{3}\)
Nếu \(a\ne0\Rightarrow\lim\dfrac{an^3+bn^2+2n+4}{n^2+1}=\lim\dfrac{an+b+\dfrac{2}{n}+\dfrac{4}{n^2}}{1+\dfrac{1}{n}}=\infty\) ko thỏa mãn
\(\Rightarrow a=0\)
Khi đó: \(\lim\dfrac{bn^2+2n+4}{n^2+1}=\lim\dfrac{b+\dfrac{2}{n}+\dfrac{4}{n^2}}{1+\dfrac{1}{n^2}}=b\Rightarrow b=1\)
\(\Rightarrow2a+b=1\)
\(\lim\dfrac{1+a+...+a^n}{1+b+...+b^n}=\lim\dfrac{\dfrac{1-a^n}{1-a}}{\dfrac{1-b^n}{1-b}}=\lim\dfrac{\left(1-a^n\right)\left(1-b\right)}{\left(1-b^n\right)\left(1-a\right)}=\dfrac{1-b}{1-a}\)
\(\Rightarrow\dfrac{1-b}{1-a}=\dfrac{2}{3}\Leftrightarrow3-3b=2-2a\)
\(\Leftrightarrow2a-3b=-1\)
a) lim \(\frac{\left(2n+1\right)^2\left(n-1\right)}{\sqrt[3]{n^3+7n-2}}\)
= lim \(\left(2n+1\right)^2.\frac{\left(1-\frac{1}{n}\right)}{\sqrt[3]{1+\frac{7}{n^2}-\frac{2}{n^3}}}\)
\(=+\infty\)
b) lim \(\left(2n-1\right)\sqrt{\frac{2n^2+5}{n^4+n^2+2}}\)
= lim \(\left(2-\frac{1}{n}\right)\sqrt{\frac{2+\frac{5}{n^2}}{1+\frac{1}{n^2}+\frac{2}{n^4}}}\)
=2.2 = 4
c ) = lim \(n.\frac{n^2}{\sqrt[3]{\left(n^3+n^2\right)^2+n\sqrt[3]{n^3+n^2}+n^2}}\)
= lim \(n.\frac{1}{\sqrt[3]{\left(1+\frac{1}{n}\right)^2+\sqrt[3]{1+\frac{1}{n}}+1}}\)
\(=+\infty\)