Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lim\(\frac{3n^2+n-5}{2n^2+1}\)=lim\(\frac{n^2\left(3+\frac{1}{n}-\frac{5}{n^2}\right)}{n^2\left(2+\frac{1}{n}\right)}\)=\(\frac{3}{2}\)
lim\(\frac{\sqrt{9n^2-n}+1}{4n-2}\)=lim\(\frac{n\sqrt{9-\frac{1}{n}+\frac{1}{n^2}}}{n\left(4-\frac{2}{n}\right)}\)=lim\(\frac{\sqrt{9}}{4}\)=\(\frac{3}{2}\)
a;Chia n cả tử và mẫu
b;Chia cho n4 mà tử dần đến 0 mẫu dần đến 1 nên lim =0
\(=lim\left(\frac{12n^2+12n+3}{n^2+2n}-\frac{4n^2+4n+1}{n^2+3n+1}\right)=lim\left(\frac{12+\frac{12}{n}+\frac{3}{n^2}}{1+\frac{2}{n}}-\frac{4+\frac{4}{n}+\frac{1}{n^2}}{1+\frac{3}{n}+\frac{1}{n^2}}\right)=\frac{12}{1}-\frac{4}{1}=8\)
a/ \(lim\left(\sqrt[3]{n-n^3}+n+\sqrt{n^2+3n}-n\right)\)
\(=lim\left(\frac{n}{\sqrt[3]{\left(n-n^3\right)^2}-n\sqrt[3]{\left(n-n^3\right)}+n^2}+\frac{3n}{\sqrt{n^2+3n}+n}\right)\)
\(=lim\left(\frac{1}{\sqrt[3]{n^3+2n+\frac{1}{n}}+\sqrt[3]{n^3-n}+n}+\frac{3}{\sqrt{1+\frac{3}{n}}+1}\right)=0+\frac{3}{1+1}=\frac{3}{2}\)
b/ \(lim\left(\frac{-2\sqrt{n}-4}{\sqrt{n-2\sqrt{n}}+\sqrt{n+4}}\right)=lim\left(\frac{-2-\frac{4}{\sqrt{n}}}{\sqrt{1-\frac{2}{\sqrt{n}}}+\sqrt{1+\frac{4}{n}}}\right)=-\frac{2}{1+1}=-1\)
c/ \(lim\left(\frac{3n^2}{\sqrt[3]{n^6+6n^5+9n^4}+\sqrt[3]{n^6+3n^5}+n^2}\right)=lim\left(\frac{3}{\sqrt[3]{1+\frac{6}{n}+\frac{9}{n^2}}+\sqrt[3]{1+\frac{3}{n}}+1}\right)=\frac{3}{3}=1\)
d/ \(lim\left(\sqrt[3]{n^3+6n}-n+n-\sqrt{n^2-4n}\right)=lim\left(\frac{6n}{\sqrt[3]{n^6+12n^4+36n^2}+\sqrt[3]{n^6+6n^4}+n^2}+\frac{4n}{n+\sqrt{n^2-4n}}\right)\)
\(=lim\left(\frac{6}{\sqrt[3]{n^3+12n+\frac{36}{n}}+\sqrt[3]{n^3+6n}+n}+\frac{4}{1+\sqrt{1-\frac{4}{n}}}\right)=0+\frac{4}{1+1}=2\)
e/ \(lim\left(\frac{-3.3^n+4.4^n}{5.3^n+\frac{3}{2}.4^n}\right)=lim\left(\frac{-3\left(\frac{3}{4}\right)^n+4}{5.\left(\frac{3}{4}\right)^n+\frac{3}{2}}\right)=\frac{0+4}{0+\frac{3}{2}}=\frac{8}{3}\)
f/ \(lim\left(\frac{9^n-5.5^n+7.7^n}{9.3^n+5^n+2.8^n}\right)=lim\left(\frac{1-5.\left(\frac{5}{9}\right)^n+7\left(\frac{7}{9}\right)^n}{9.\left(\frac{1}{3}\right)^n+\left(\frac{5}{9}\right)^n+2.\left(\frac{8}{9}\right)^n}\right)=\frac{1}{0}=+\infty\)
g/ \(lim\left(\frac{6.6^n+3^5.9^n}{3^3.9^n-\frac{1}{2}.4^n}\right)=lim\left(\frac{6\left(\frac{2}{3}\right)^n+3^5}{3^3-\frac{1}{2}\left(\frac{4}{9}\right)^n}\right)=\frac{3^5}{3^3}=9\)
\(=lim\frac{n\sqrt{1+\frac{1}{n}-\frac{1}{n^2}}-n\sqrt{4-\frac{2}{n^2}}}{n\left(1+\frac{3}{n}\right)}=\frac{\sqrt{1+0+0}-\sqrt{4-0}}{1+0}=-1\)
\(=lim\frac{3\left(\frac{3}{7}\right)^n-\frac{1}{4}.\left(\frac{2}{7}\right)^n-5.\left(\frac{1}{7}\right)^n}{3+6.\left(\frac{1}{7}\right)^n}=\frac{3.0-\frac{1}{4}.0-5.0}{3+6.0}=0\)
\(=lim\frac{2n-4}{3n+\sqrt{9n^2-2n+4}}=lim\frac{2-\frac{4}{n}}{3+\sqrt{9-\frac{2}{n}+\frac{4}{n^2}}}=\frac{2}{3+\sqrt{9}}=\frac{1}{3}\)
a) lim \(\frac{\left(2n^2-3n+5\right)\left(2n+1\right)}{\left(4-3n\right)\left(2n^2+n+1\right)}\)
= lim \(\frac{\left(2-\frac{3}{n}+\frac{5}{n^2}\right)\left(2+\frac{1}{n}\right)}{\left(\frac{4}{n}-3\right)\left(2+\frac{1}{n}+\frac{1}{n^2}\right)}=\frac{4}{-6}=-\frac{2}{3}\)
b)lim ( \(\frac{\sqrt{n^4+1}}{n}-\frac{\sqrt{4n^6+2}}{n^2}\))
= lim ( \(\frac{n\sqrt{n^4+1}-\sqrt{4n^6+2}}{n^2}\) )
= lim \(\frac{\left(n^6+n^2\right)-\left(4n^6+2\right)}{n^2\left(n\sqrt{n^4+1}+\sqrt{4n^2+2}\right)}\)
= lim \(\frac{-3n^6+n^2+2}{n^3\sqrt{n^4+1}+n^2\sqrt{4n^2+2}}\)
= lim \(\frac{-3n\left(1-\frac{1}{n^4}-\frac{2}{n^6}\right)}{\sqrt{1+\frac{1}{n^4}}+\frac{1}{n^2}\sqrt{4+\frac{2}{n^2}}}\)
= lim \(-3n=-\infty\)
c) lim \(\frac{2n+3}{\sqrt{9n^2+3}-\sqrt[3]{2n^2-8n^3}}\)
= lim\(\frac{2+\frac{3}{n}}{\sqrt{9+\frac{3}{n^2}}-\sqrt[3]{\frac{2}{n}-8}}=\frac{2}{3+2}=\frac{2}{5}\)
a) lim \(\frac{\left(2n+1\right)^2\left(n-1\right)}{\sqrt[3]{n^3+7n-2}}\)
= lim \(\left(2n+1\right)^2.\frac{\left(1-\frac{1}{n}\right)}{\sqrt[3]{1+\frac{7}{n^2}-\frac{2}{n^3}}}\)
\(=+\infty\)
b) lim \(\left(2n-1\right)\sqrt{\frac{2n^2+5}{n^4+n^2+2}}\)
= lim \(\left(2-\frac{1}{n}\right)\sqrt{\frac{2+\frac{5}{n^2}}{1+\frac{1}{n^2}+\frac{2}{n^4}}}\)
=2.2 = 4
c ) = lim \(n.\frac{n^2}{\sqrt[3]{\left(n^3+n^2\right)^2+n\sqrt[3]{n^3+n^2}+n^2}}\)
= lim \(n.\frac{1}{\sqrt[3]{\left(1+\frac{1}{n}\right)^2+\sqrt[3]{1+\frac{1}{n}}+1}}\)
\(=+\infty\)
Mặt nước trong hồ tựa như chiếc gương bầu dục phản chiếu ánh sáng trên quê hương tôi.
HOK TỐT NHA BN YÊU!
NHẦM NHA BN, LÀ MK TRẢ LỜI CÂU HỎI BÊN DƯỚI!