K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 10 2023

Lời giải:

$2x\equiv 9\pmod {11}\Rightarrow 2x=11k+9$ với $k$ tự nhiên.

Do $2x$ chẵn nên $11k$ lẻ nên $k$ lẻ.

$x$ là số có 3 chữ số

$\Rightarrow 2x=11k+9\geq 200$

$\Rightarrow k\geq \frac{191}{11}=17,36....$

$\Rightarrow k$ nhỏ nhất bằng $19$ (do $k$ lẻ)

$\Rightarrow x$ nhỏ nhất là: $(11.19+9):2=109$

2 tháng 1 2019

\(\left|x+y\right|\text{nhỏ nhất }\Rightarrow x+y=0\Rightarrow x=-y\)

thay xy=1 và x+y=0, ta có: 

\(M=2x^2+2\left(-x^2\right)+3.1-\left(x+y\right)-3=4x^2=\left(2x\right)^2\)

3 tháng 1 2019

Easy mà:

Ta có: \(\left|x+y\right|\ge0\forall x,y\)  mà \(\left|x+y\right|\) nhỏ nhất nên \(\left|x+y\right|=0\Leftrightarrow x=-y\)

Thay vào M,ta có; \(M=2\left(-y\right)^2+2y^2+3.1-\left(-y\right)-y-3\)  (Thay x bởi -y)

\(=4y^2+3-3=4y^2\)

24 tháng 12 2016

vì M>3suy ra gtnn của M=4

11 tháng 1 2017

Ta có : \(\frac{x^2+2x-9}{x-3}\)=\(\frac{x^2-9+2x}{x-3}\)=\(\frac{\left(x-3\right)\cdot\left(x+3\right)}{x-3}+\frac{2x+6-6}{x-3}\)=\(\left(x+3\right)+\frac{2x-6}{x-3}+\frac{6}{x-3}\)=\(\left(x-3\right)+6+\frac{2\cdot\left(x-3\right)}{x-3}+\frac{6}{x-3}=\left(x-3\right)+\frac{6}{x-3}+6+2=\left(x-3\right)+\frac{6}{x-3}+8\)                   Với x>0 áp dụng bất đẳng thức CÔ-SI ta có:(\(\left(x-3\right)+\frac{6}{x-3}>=2\sqrt{\left(x-3\right)\cdot\frac{6}{x-3}}=2\sqrt{6}\)==> M \(>=2\sqrt{6}+8\)  Vậy MIN M là \(2\sqrt{6}+8\)<==> \(\left(x-3\right)\cdot\left(x-3\right)=6\)<==>\(\left(x-3\right)=\sqrt{6}\)<==>\(x=\sqrt{6}+3\)

30 tháng 12 2016

Bạn thiiện hổi hãy sủa lại đề cho chuẩn:

lớp 8 rồi đùng viết như lớp 3 nữa

2 tháng 8 2020

\(B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2}{x-2}\right):\left(\frac{x+2}{x}-\frac{x}{x-2}\right)\)

\(< =>B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2x}{x\left(x-2\right)}\right):\left(\frac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\frac{x.x}{x\left(x-2\right)}\right)\)

\(< =>B=\left(\frac{x-4+2x}{x\left(x-2\right)}\right):\left(\frac{x^2-4}{x\left(x-2\right)}+\frac{x^2}{x\left(x-2\right)}\right)\)

\(< =>B=\frac{3x-4}{x\left(x-2\right)}:\frac{x^2-4+x^2}{x\left(x-2\right)}\)

\(< =>B=\frac{3x-4}{x\left(x-2\right)}.\frac{x\left(x-2\right)}{2x^2-4}\)

\(< =>B=\frac{3x-4}{2x^2-4}\)

\(b,\)Với \(x=-2\)thì

 \(B=\frac{3\left(-2\right)-4}{2\left(-2\right)^2-4}=\frac{-6-4}{8-4}=-\frac{10}{4}=-\frac{5}{2}\)

2 tháng 8 2020

\(ĐKXĐ:x\ne2;x\ne0\)

a

\(B=\left[\frac{x-4}{x\left(x-2\right)}+\frac{2}{x-2}\right]:\left(\frac{x+2}{x}-\frac{x}{x-2}\right)\)

\(=\frac{x-4+2x}{x\left(x-2\right)}:\frac{\left(x+2\right)\left(x-2\right)-x^2}{x\left(x-2\right)}\)

\(=\frac{3x-4}{x^2-4-x^2}=-\frac{3x-4}{4}\)

b

\(B=-\frac{3x-4}{4}=-\frac{3\cdot\left(-2\right)-4}{4}=\frac{5}{2}\)

c

\(\left|B\right|-2x=5\Leftrightarrow\left|B\right|=5+2x\)

\(B=-\frac{3x-4}{4}\Leftrightarrow-\frac{3x-4}{4}\ge0\Leftrightarrow x\le\frac{4}{3}\)

\(B=\frac{3x-4}{4}\Leftrightarrow x>\frac{4}{3}\)

Xét các trường hợp của x thì ra nghiệm bạn nhé

d

\(\left(2-x\right)B=-\frac{\left(2-x\right)\left(3x-4\right)}{4}\)

Để ( 2 - x ).B đạt giá trị nhỏ nhất thì ( 2 - x ) ( 3x - 4 ) đạt giá trị lớn nhất

Casio sẽ giúp chúng ta phần này

e

Để B là số nguyên âm lớn nhất hay \(B=-1\Leftrightarrow-\frac{3x-4}{4}=-1\Leftrightarrow x=\frac{8}{3}\)

g

\(\left|B\right|+3< 2x-1\)

Làm hệt như câu c nhé :D 

20 tháng 11 2017

A=x4+12+2x3+2x+3x2

A=(x2)2+2(x2)(1)+(1)2-2x2+2x(x2+1)+3x2

A=(x2+1)2+2x(x2+1)+x2

Đặt a=x2+1

Khi đó đa thức trở thành:

A=a2+2ax+x2

A=(a+x)2

A=(x2+1+x)2

\(A=\left(x\right)^2+2\left(x\right)\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2-\frac{1}{4}+\frac{4}{4}\)

\(A=\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]^2\)

Ta có:

\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

\(\Leftrightarrow A\ge\frac{3}{4}\)

Dấu"=" xảy ra khi:

\(x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy GTNN của A là \(\frac{3}{4}\)khi x=\(\frac{-1}{2}\)

20 tháng 11 2017

hình như theo cách giải của Nguyễn Triệu Khả Nhi thì GTNN của P=0 thì mới đúng