Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét N :
N = \(\frac{1}{2.2}\)+\(\frac{1}{3.3}\)+\(\frac{1}{4.4}\)+...+\(\frac{1}{2009.2009}\)+\(\frac{1}{2010.2010}\)
Ta có :
\(\frac{1}{2.2}\)< \(\frac{1}{1.2}\)
\(\frac{1}{3.3}\)< \(\frac{1}{2.3}\)
...
\(\frac{1}{2009.2009}\)<\(\frac{1}{2008.2009}\)
\(\frac{1}{2010.2010}\)<\(\frac{1}{2019.2010}\)
Cộng vế theo vế của các bất đẳng thức trên , ta có :
\(\frac{1}{2.2}\)+\(\frac{1}{3.3}\)+\(\frac{1}{4.4}\)+...+\(\frac{1}{2009.2009}\)+\(\frac{1}{2010.2010}\) < \(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+...+\(\frac{1}{2008.2009}\)+\(\frac{1}{2019.2010}\)
=> N < 1 - \(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{2009}\)-\(\frac{1}{2010}\)
=> N < 1 - \(\frac{1}{2010}\)<1
=> N < 1
Dễ quá, thực hiện qui tắc bỏ dấu ngoặc được:
\(2009+2009^2+....+2009^{2009}-1-2009-...-2009^{2008}\)
\(=-1+\left(2009-2009\right)+\left(2009^2-2009^2\right)+...+\left(2009^{2008}-2009^{2008}\right)+2009^{2008}\)
\(=2009^{2008}-1\)
\(=\left(2009-1\right)\left(2009^{2007}+2009^{2008}+...+2009+1\right)\)
\(=2008\left(2009^{2007}+2009^{2008}+...+2009+1\right)\) chia hết cho 2008
=> ĐPCM
Chứng Minh Rằng: (2009+20092+20093+20094+...+20092009)-(1+2009+20092+20093+...+20092008) chia hết cho 2008.
Đặt A=2009+20092+20093+20094+...+20092009, B=1+2009+20092+20093+20094+...+20092008
Ta có:
+)A=2009+20092+20093+20094+...+20092009
2009A= 20092+20093+20094+...+20092010
2009A-A=(20092+20093+20094+...+20092010)-(2009+20092+20093+20094+...+20092009)
2008A=20092010- 2009
=> A=(20092010- 2009)/2008
=> A chia hết cho 2008.
B=1+2009+20092+20093+20094+...+20092008
2009B=2009+20092+20093+20094+...+20092010
2009B-B=(2009+20092+20093+20094+...+20092010)-(1+2009+20092+20093+20094+...+20092009)
2008B=20092010-1
=>B=(20092010-1)/2008
=>B chia hết cho 2008
=> A-B chia hết cho 2008.
=> ĐPCM
a) a = (2009+20092)+(20093+20094)+...+(20099+201010)
=2009(2009+1)+20093(2009+1)+...+20099(2009+1)
a=2010(2009+20093+...+20099) chia hết cho 2010.
b) Gọi d=ƯCLN(3n+5,2n+3)
=>3n+5,2n+3 ⋮ d
=>2(3n+5) - 3(2n+3) ⋮ d
=>1 ⋮ d => d=1 => 3n+5 và 2n+3 là 2 số nguyên tố cùng nhau.
=>Phân số \(\frac{3n+5}{2n+3}\) luôn luôn tối giản với mọi STN n.
b
giúp bạn khác trả lời bài tập sẽ trở thành học sinh giỏi. Người hay hỏi bài thì không. Còn bạn thì sao?
- Câu hỏi của Nguyễn Thị Thu Hải
- Mới nhất
- Chưa trả lời
- Câu hỏi hay
a=1+2^2/3^2+2^2/5^2+2^2/7^2+...+2^2/2009^2
So sanh a với 3
giúp tớ với kaka :(((
\(P=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2008}{3^{2008}}+\frac{2009}{3^{2009}}\)
\(\Rightarrow3P=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{2009}{3^{2008}}\)
\(\Rightarrow2P=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2008}}-\frac{2009}{3^{2009}}=A-\frac{2009}{3^{2009}}\)
\(A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)
\(\Rightarrow3A=3+1+\frac{1}{3}+...+\frac{1}{3^{2007}}\)
\(\Rightarrow2A=3-\frac{1}{3^{2008}}< 3\Rightarrow A< \frac{3}{2}\)
\(\Rightarrow2P=A-\frac{2009}{2^{2009}}< A< \frac{3}{2}\Rightarrow P< \frac{3}{4}\)
Cảm ơn Nguyễn Việt Lâm nha !