Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(2009+2009^2)+(2009^3+2009^4)+...+(2009^9+2009^10)
A=[2009.(1+2009)]+[2009^3.(1+2009)]+....+[2009^9.(1+2009)]
A=2009.2010+2009^3.2010+...+2009^9.2010
A=2010(2009+2009^3+2009^5+......+2009^9) chia het cho 2010
Ta có :
\(A=2009+2009^2+2009^3+2009^4+....+2009^{10}\)
Tổng A có số số hạng là :
( 10 - 1 ) : 1 + 1 = 10 ( số hạng )
Vì \(10⋮2\)nên khi ta nhóm 2 số liên tiếp lại thành một căp thì không thừa số nào cả
\(\Rightarrow A=\left(2009+2009^2\right)+\left(2009^3+2009^4\right)+....+\left(2009^9+2009^{10}\right)\)
\(\Rightarrow A=2009.\left(1+2009\right)+2009^3.\left(1+2009\right)+....+2009^9.\left(1+2009\right)\)
\(\Rightarrow A=2009.2010+2009^3.2010+....+2009^9.2010\)
\(\Rightarrow A=2010.\left(2009+2009^3+....+2009^9\right)\)
Vì \(2009+2009^3+....+2009^9\inℤ\)nên \(2010.\left(2009+2009^3+....+2009^9\right)\inℤ\)
Vì \(2010⋮2010\)nên \(A⋮2010\)
Vậy \(A=2009+2009^2+2009^3+....+2009^{10}⋮2010\left(ĐPCM\right)\)
a) Tổng C có số số hạng là :
( 20 - 1 ) : 1 + 1 = 20 ( số )
Ta thấy \(20⋮2\)nên khi ta nhóm 2 số lại thì sẽ không có số nào bị thừa cả
Ta có :
\(C=2009+2009^2+2009^3+......+2009^{20}\)
\(C=\left(2009+2009^2\right)+\left(2009^3+2009^4\right)+.....+\left(2009^{19}+2009^{20}\right)\)
\(C=1.\left(1+2009\right)+2009^3.\left(1+2009\right)+......+2009^{19}.\left(1+2009\right)\)
\(C=1.2010+2009^3.2010+.....+2009^{19}.2010\)
\(C=2010.\left(1+2009^3+....+2009^{19}\right)\)
Vậy \(C⋮2010\left(ĐPCM\right)\)
b) Gọi số cần tìm là : a \(\left(a\ne0;a\inℤ\right)\)
Vì a chia cho 5 dư 3 nên \(a-3⋮5\)suy ra \(a-3+5⋮5\Rightarrow a+2⋮5\)
Vì a chia cho 6 dư 4 nên \(a-4⋮6\)suy ra \(a-4+6⋮6\Rightarrow a+2⋮6\)
Vì a chia cho 7 dư 5 nên \(a-5⋮7\)suy ra \(a-5+7⋮7\Rightarrow a+2⋮7\)
Vì \(\hept{\begin{cases}a+2⋮5\\a+2⋮6\\a+2⋮7\end{cases}\Rightarrow a+2\in BC\left(5;6;7\right)}\)
Vì a phải là nhỏ nhất nên \(a+2\in BCNN\left(5;6;7\right)\)
Vì \(\left(5;6;7\right)=1\)nên \(BCNN\left(5;6;7\right)=5.6.7=210\)
\(\Rightarrow a+2=210\)
\(\Rightarrow a=210-2\)
\(\Rightarrow a=208\)
Vậy \(a=208\)
1/ A= 71+72+73+74+75+76\(⋮\)57
Ta có : 71+72+73+74+75+76= (71+72+73)+(74+75+76)
=7x(1+7+72)+74x(1+7+72)
=7x57+74x57
=57x(7+74)\(⋮\)57
4n+17
Vậy A \(⋮\)57
Phần 2 thiếu đề bài
3/ 4n+17\(⋮\)2n+3
=>4n+17-2x(2n+3)\(⋮\) 2n+3
=>4n+17-4n-6\(⋮\) 2n+3
=>11\(⋮\)2n+3
=>2n+3 \(\varepsilon\)Ư(11)
mà Ư(11) ={1;11}
Vì 2n+3 là số tự nhiên =>2n+3 =11
=>2n=11-3
=>2n=8
=>n=8 :2
=> n=4
Vậy n=4 thì ...
4/ 9n+17 \(⋮\)3n+2
=>9n+17-3x(3n+2)\(⋮\)3n+2
=>9n+17-9n-6\(⋮\)3n+2
=>11\(⋮\)3n+2
=>3n+2 \(\varepsilon\)Ư(11)
mà Ư(11)={1;11}
Vì 3n+2 là số tự nhiên => 3n+2>2
=>3n+2 =11
=>3n=11-2
=>3n=9
=>n=9:3
=>n=3
Vậy n=3 thì ...
A=[(-1)+(-3)+....+(-2009)]+(2+4+...+2010)
A= {[-2009+(-1)].[(2009-1):2+1]}+{(2010+2).[(2010-2):2+1]}
A= {-2010.[(2009-1):2+1]}+[(2010+2).1005]
Vì có -2010 và 1005 chia hết cho 5 nên 2 tích nhỏ trên chia hết cho 5 suy ra A là tổng của 2 số chia hết cho 5 nên cũng chia hết cho 5.
A = [(-1) + 2] + [(-3) +4] + ... + [(-2009) + 2010]
= 1 + 1 + 1 + ... + 1 (1005 số 1)
= 1005 chia hết cho 5
Dễ quá, thực hiện qui tắc bỏ dấu ngoặc được:
\(2009+2009^2+....+2009^{2009}-1-2009-...-2009^{2008}\)
\(=-1+\left(2009-2009\right)+\left(2009^2-2009^2\right)+...+\left(2009^{2008}-2009^{2008}\right)+2009^{2008}\)
\(=2009^{2008}-1\)
\(=\left(2009-1\right)\left(2009^{2007}+2009^{2008}+...+2009+1\right)\)
\(=2008\left(2009^{2007}+2009^{2008}+...+2009+1\right)\) chia hết cho 2008
=> ĐPCM
Chứng Minh Rằng: (2009+20092+20093+20094+...+20092009)-(1+2009+20092+20093+...+20092008) chia hết cho 2008.
Đặt A=2009+20092+20093+20094+...+20092009, B=1+2009+20092+20093+20094+...+20092008
Ta có:
+)A=2009+20092+20093+20094+...+20092009
2009A= 20092+20093+20094+...+20092010
2009A-A=(20092+20093+20094+...+20092010)-(2009+20092+20093+20094+...+20092009)
2008A=20092010- 2009
=> A=(20092010- 2009)/2008
=> A chia hết cho 2008.
B=1+2009+20092+20093+20094+...+20092008
2009B=2009+20092+20093+20094+...+20092010
2009B-B=(2009+20092+20093+20094+...+20092010)-(1+2009+20092+20093+20094+...+20092009)
2008B=20092010-1
=>B=(20092010-1)/2008
=>B chia hết cho 2008
=> A-B chia hết cho 2008.
=> ĐPCM
a) a = (2009+20092)+(20093+20094)+...+(20099+201010)
=2009(2009+1)+20093(2009+1)+...+20099(2009+1)
a=2010(2009+20093+...+20099) chia hết cho 2010.
b) Gọi d=ƯCLN(3n+5,2n+3)
=>3n+5,2n+3 ⋮ d
=>2(3n+5) - 3(2n+3) ⋮ d
=>1 ⋮ d => d=1 => 3n+5 và 2n+3 là 2 số nguyên tố cùng nhau.
=>Phân số \(\frac{3n+5}{2n+3}\) luôn luôn tối giản với mọi STN n.
b
giúp bạn khác trả lời bài tập sẽ trở thành học sinh giỏi. Người hay hỏi bài thì không. Còn bạn thì sao?
a=1+2^2/3^2+2^2/5^2+2^2/7^2+...+2^2/2009^2
So sanh a với 3
giúp tớ với kaka :(((