Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(DA\cdot DB+EA\cdot EC\)
\(=HD^2+HE^2\)
\(=AH^2=HB\cdot HC\)
hình tự vẽ nhé:
\(BC=BH+HC=16+81=97\)
Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(AB^2=16.97=1552\)
\(\Rightarrow\)\(AB=\sqrt{1552}=4\sqrt{97}\)
\(AC^2=HC.BC\)
\(\Rightarrow\)\(AC^2=81.97=7857\)
\(\Rightarrow\)\(AC=\sqrt{7857}=9\sqrt{97}\)
\(AH.BC=AB.AC\)
\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}\)
\(\Rightarrow\)\(AH=\frac{4\sqrt{97}.9\sqrt{97}}{97}=36\)
\(AD.AB=AH^2\)
\(AE.AC=AH^2\)
suy ra: \(AD.AB=AE.AC\)
Với bài toán này, ta sử dụng hệ thức lượng trong tam giác.
A B C H E F
a. Kiểm tra thấy \(AB^2+AC^2=BC^2\) nên tam giác ABC vuông tại A.
\(AH=\frac{AB.AC}{BC}=\frac{60}{13}\)
b. Áp dụng hệ thức lượng, ta thấy \(AB.EA=AH^2=AF.AC\)
c. Từ kết quả câu b và góc A vuông ta suy ra được \(\Delta AEF\sim\Delta ACB\left(c-g-c\right)\).
- Ap dung dinh ly pitago dao vao tam giac ABC ta co AB2+AC2=52+122=169=132 . ma BC2=132
- =>AB2+AC2=BC2=>Tam giac ABC vuong tai A
- Ke duong cao AH .Ap dung ti so luong giac vao tam giac vuong ABC ta co \(\frac{1}{AH^2}\)= \(\frac{1}{AB^2}\)+ \(\frac{1}{AC^2}\)=>\(\frac{1}{AH^2}\)= \(\frac{1}{5^2}\)+ \(\frac{1}{12^2}\)=>AH=\(\frac{60}{13}\)
3.Tu HE vuong goc voi AB , HF vuong goc voi AC =>HEA =900 , HFA =900 va BAC =900=>tu giac EHFA la hinh chu nhat =>goc AEF=EAH ma EAH=ACH vi cung phu voi goc HAC =>Ta chung minh duoc EAF ~ ABC 2.=>\(\frac{AB}{AF}\)= \(\frac{AC}{AE}\)=>AB\(\times\)AE = AF\(\times\)AC
a: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=AB^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\\BH=\dfrac{9^2}{15}=5.4\left(cm\right)\end{matrix}\right.\)
b:
ΔAHB vuông tại H có HD là đường cao
nên \(HD\cdot AB=HA\cdot HB\)
ΔAHC vuông tại H có HE là đường cao
nên \(HE\cdot AC=HA\cdot HC\)
\(HD\cdot AB+HE\cdot AC\)
\(=HA\cdot HB+HA\cdot HC=HA\cdot\left(HB+HC\right)\)
\(=HA\cdot BC=AB\cdot AC\)
c: Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
ΔABC vuông tại A có AM là trung tuyến
nên AM=MB=MC
\(\widehat{IEA}+\widehat{IAE}=\widehat{DEA}+\widehat{IAC}\)
\(=\widehat{DHA}+\widehat{MCA}\)
\(=\widehat{ABC}+\widehat{ACB}=90^0\)
=>AM vuông góc DE tại I
ΔADE vuông tại A có AI là đường cao
nên \(\dfrac{1}{AI^2}=\dfrac{1}{AE^2}+\dfrac{1}{AD^2}\)
`a,` Ta có `ΔABC` vuông tại `A,`
`=>` `HBA` là góc vuông, có số đo là `90^o`
`b,` Ta có `ΔABC` vuông tại `A`
`=>` `AH` là đường cao của `ΔABC`
Theo định lý Euclid, trong một tam giác vuông, đường cao chia tam giác thành hai tam giác nhỏ có tỉ lệ bằng độ dài các cạnh gần góc vuông.
Vậy ta có: `(AD)/(AB)` `=` `(HD)/(HC)`
Vì `ΔABC` vuông tại `A`
`=> AB` `= AC`
`=>` `(AD)/(AC)` `=` `(HD)/(HC)`
Nhân cả hai vế của phương trình trên với `AC,` ta có:
`AD .` `(AC)/(AC)` `= HD .` `(HC)/(HC)`
`AD =` `HD.``HC`
`=>` `AD.AC` `=` `HB.HC.`
a: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HD là đường cao
nên \(AD\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AD\cdot AC\)