Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho 3 số thực dương a;b;c thỏa mãn : a+ b + c = 1 . CMR
\(\frac{a+1}{a+b+c}+\frac{b+1}{b+ac}+\frac{c+1}{c+ab}\ge9\)Dấu " = " xay ra khi nào
a/ Ta có CF vuông góc AB tại F (gt)
Nên góc CFB = 90 độ
BE vuông góc AC tại E
Nên góc BEC = 90 độ
Tứ giác CEFB có hai đỉnh kề F và E cùng nhìn cạnh BC dưới một góc vuông . Do đó tứ giác CEFB nt
Ta có góc BFC = 90(cmt) độ nên tam giác BFC vuông tại F .
góc BEC = 90 độ (cmt)
Nên tam giác BEC vuông tại E
Tam giác vuông BFC và BEC đều có BC là cạnh huyền nên tâm của đường tròn ngoại tiếp tứ giác là trung điểm của cạnh BC .
Kẻ BK // AC => BK vuông vs BD (vì AC vuông vs BD)
=> ABKC là hình bình hành
=> AB = CK = 18cn
=> DK = DC + CK = 32 + 18 = 50cm
Có: BD2 = DK2 - BK2
BD2 = AD2 + AB2
=> DK2 - BK2 = AD2 + AB2
=> 502 - AC2 = AD2 + 182
=> AD2 + AC2 = 502 - 182 = 2176 (1)
Có: AC2 - AD2 = DC2 = 322 = 1024 (2)
Từ (1) và (2) ta có hệ pt => AC2 = 1600 => AC = 40cm
Vậy AC = 40cm
`a,` Ta có `ΔABC` vuông tại `A,`
`=>` `HBA` là góc vuông, có số đo là `90^o`
`b,` Ta có `ΔABC` vuông tại `A`
`=>` `AH` là đường cao của `ΔABC`
Theo định lý Euclid, trong một tam giác vuông, đường cao chia tam giác thành hai tam giác nhỏ có tỉ lệ bằng độ dài các cạnh gần góc vuông.
Vậy ta có: `(AD)/(AB)` `=` `(HD)/(HC)`
Vì `ΔABC` vuông tại `A`
`=> AB` `= AC`
`=>` `(AD)/(AC)` `=` `(HD)/(HC)`
Nhân cả hai vế của phương trình trên với `AC,` ta có:
`AD .` `(AC)/(AC)` `= HD .` `(HC)/(HC)`
`AD =` `HD.``HC`
`=>` `AD.AC` `=` `HB.HC.`
a) 90o,
b).............................. =) AD.AC = HB.HC