Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nếu k có điều kiện a, b > 0 thì bất đẳng thức k thể xảy ra
b) Ta có : \(\frac{ab}{c}+\frac{bc}{a}\ge2b\)
\(\frac{ab}{c}+\frac{ac}{b}\ge2a\)
\(\frac{bc}{a}+\frac{ac}{b}\ge2c\)
Cộng 2 vế của bất đẳng thức ta được :
\(2.\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2.\left(a+b+c\right)\)
=> bất đẳng thức cần chứng minh
a) bn sai đề nhé,đề đúng là : \(\frac{1}{a}+\frac{1}{b}\) > \(\frac{4}{a+b}\) nhé,vì mk làm rồi
Giả sử \(\frac{1}{a}+\frac{1}{b}\) > \(\frac{4}{a+b}\)
=> \(\frac{a+b}{ab}\) > \(\frac{4}{a+b}\)
=>\(\left(a+b\right)\left(a+b\right)\) > 4ab
=>\(\left(a+b\right)^2-4ab\) > 0
=>\(a^2+2ab+b^2-4ab\) > 0
=>\(a^2-2ab+b^2\) > 0
=>\(\left(a-b\right)^2\) > 0
BĐT cuối luôn đúng với mọi a;b
=>điều giả sử là đúng,ta có đpcm
(*)đề sai nên Kiệt ko ra là phải
1. (a+b)^2 ≥ 4ab
<=> a2+2ab+b2≥ 4ab
<=> a2+2ab+b2-4ab≥ 0
<=> a2-2ab+b2≥ 0
<=> (a-b)^2 ≥ 0 ( luôn đúng )
2. a^2 + b^2 + c^2 ≥ ab + bc + ca
<=> 2a^2 + 2b^2 + 2c^2 ≥ 2ab + 2bc + 2ca
<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0
<=> (a^2- 2ab+b^2) + (b^2-2bc+c^2) + (c^2-2ca+a^2) ≥ 0
<=> (a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0 ( luôn đúng)
a)\(\left(a+\frac{b}{2}\right)^2\ge ab\)
\(\Leftrightarrow a^2+ab+\frac{b^2}{4}\ge ab\)
\(\Leftrightarrow a^2+ab+\frac{b^2}{4}-ab\ge0\)
\(\Leftrightarrow a^2+\frac{b^2}{4}\ge0\)(luôn lúng)
vậy \(\left(a+\frac{b}{2}^2\right)\ge ab\)
b)\(\frac{a}{b}+\frac{b}{a}\ge2\)
\(\Leftrightarrow\frac{a^2+b^2}{ab}-2\ge0\)
\(\Leftrightarrow\frac{a^2+b^2+2ab}{ab}\ge0\)
\(\Leftrightarrow\frac{\left(a+b\right)^2}{ab}\ge0\)(luôn đóng vì a,b>0)
Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)với a,b>0
a) đề sai à bạn 4/a+b chứ
b)Theo BĐT Côsi:
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\left(\frac{ab}{c}.\frac{bc}{a}\right)}=2b\)
Tương tự ta có:
\(\frac{bc}{a}+\frac{ca}{b}\ge2c\)
\(\frac{ca}{b}+\frac{ab}{c}\ge2a\)
Cộng vế với vế của 3 bđt trên rồi chia 2 vế bđt thu được cho 2 ta có ngay đpcm.
Đẳng thức xảy ra khi a = b = c