K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

do a,b,c > áp dụng BĐT Cosi ta có 

c+a/bc>=2<c.a/bc>=2<a/b>(bạn hiểu <> là căn bậc 2 nhan )

a+b/ac>=2<b/c>

b+c/ab>=2<c/a>

suy ra (c+a/bc)(a+b/ac)(b+c/ab)>=2<a/b>.2<b/c>.2<c/a>=8<abc/abc>=8(đpcm)

Nếu a>0 và b>0 thì a+c>b+c

Nếu a<0 và b<0 thì a+c<b+c

Nếu a>b và c>0 thì ac>bc

Nếu a>c và c<0 thì ac<bc

8 tháng 6 2016

a) đề sai à bạn 4/a+b chứ

8 tháng 6 2016

b)Theo BĐT Côsi:

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\left(\frac{ab}{c}.\frac{bc}{a}\right)}=2b\)

Tương tự ta có:

\(\frac{bc}{a}+\frac{ca}{b}\ge2c\)

\(\frac{ca}{b}+\frac{ab}{c}\ge2a\)

Cộng vế với vế của 3 bđt trên rồi chia 2 vế bđt thu được cho 2 ta có ngay đpcm. 

Đẳng thức xảy ra khi a = b = c

8 tháng 6 2016

a) Nếu k có điều kiện a, b > 0 thì bất đẳng thức k thể xảy ra

b) Ta có : \(\frac{ab}{c}+\frac{bc}{a}\ge2b\)

  \(\frac{ab}{c}+\frac{ac}{b}\ge2a\)

   \(\frac{bc}{a}+\frac{ac}{b}\ge2c\)

Cộng 2 vế của bất đẳng thức ta được :

\(2.\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2.\left(a+b+c\right)\)

=> bất đẳng thức cần chứng minh

8 tháng 6 2016

a) bn sai đề nhé,đề đúng là : \(\frac{1}{a}+\frac{1}{b}\) > \(\frac{4}{a+b}\) nhé,vì mk làm rồi

Giả sử  \(\frac{1}{a}+\frac{1}{b}\) > \(\frac{4}{a+b}\)

=> \(\frac{a+b}{ab}\) > \(\frac{4}{a+b}\)

=>\(\left(a+b\right)\left(a+b\right)\) > 4ab

=>\(\left(a+b\right)^2-4ab\) > 0

=>\(a^2+2ab+b^2-4ab\) > 0

=>\(a^2-2ab+b^2\) > 0

=>\(\left(a-b\right)^2\) > 0

BĐT cuối luôn đúng với mọi a;b

=>điều giả sử là đúng,ta có đpcm

(*)đề sai nên Kiệt ko ra là phải

 

25 tháng 6 2015

+TH1: có 1 số < 0 là a, 2 số lớn hơn 0 là b,c
=> bc > 0 mà a < 0
=> abc < 0 (trái giả thiết) => không tồn tại trường hợp này.

+TH2: 2 số <0 là b,c ; 1 số lớn hơn 0 là a.
=> bc > 0; b+c < 0; a > 0
a+b+c > 0 => a > -(b+c) > 0 => a.(b+c) < -(b+c).(b+c) (nhân cả 2 vế với 1 số < 0 là (b+c) nên đổi chiều)
=> ab+bc+ca=a(b+c) + bc < -(b+c)+ bc = -(b2+c2+bc) < 0 (do b2,c2,bc > 0) => trái giả thiết => không tồn tại trường hợp này.

+TH3: a,b,c < 0
=>abc < 0 => trái giả thiết => không tồn tại trường hợp này.

Vậy: a,b,c > 0

25 tháng 4 2019

sao th2 k suy ra ab>0 và c<0 nên abc<0 luôn

4 tháng 5 2018

\(BDT\Leftrightarrow\left(\frac{a}{a+b}-\frac{1}{2}\right)+\left(\frac{b}{b+c}-\frac{1}{2}\right)+\left(\frac{c}{c+a}-\frac{1}{2}\right)\ge0\)

\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}+\frac{b-c}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)

\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}+\frac{\left(b-a\right)+\left(a-c\right)}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)

\(\Leftrightarrow\frac{1}{2}\left(a-b\right)\left(\frac{1}{a+b}-\frac{1}{b+c}\right)+\frac{1}{2}\left(a-c\right)\left(\frac{1}{b+c}-\frac{1}{c+a}\right)\ge0\)

\(\Leftrightarrow\frac{\left(c-a\right)\left(a-b\right)}{2\left(a+b\right)\left(b+c\right)}+\frac{\left(a-c\right)\left(a-b\right)}{2\left(b+c\right)\left(c+a\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-c\right)\left(a-b\right)}{2\left(b+c\right)}\left(-\frac{1}{a+b}+\frac{1}{c+a}\right)\ge0\)

\(\Leftrightarrow\frac{\left(a-c\right)\left(a-b\right)\left(b-c\right)}{2\left(a+b\right)\left(a+c\right)\left(b+c\right)}\ge0\)(luôn đúng \(\forall a\ge b\ge c>0\))

Vậy BĐT đã được chứng minh