Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Thanh Thảo - Toán lớp 8 - Học toán với OnlineMath
Bạn xem tham khảo nha
ĐK: \(x\ge0\)
+) Với x = 0 => A = 0
+) Với x khác 0
Ta có: \(\frac{1}{A}=\frac{3}{4}\sqrt{x}-\frac{3}{4}+\frac{3}{4\sqrt{x}}=\frac{3}{4}\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)-\frac{3}{4}\ge\frac{3}{4}.2-\frac{3}{4}=\frac{3}{4}\)
=> \(A\le\frac{4}{3}\)
Dấu "=" xảy ra <=> \(\sqrt{x}=\frac{1}{\sqrt{x}}\)<=> x = 1
Vậy max A = 4/3 tại x = 1
Còn có 1 cách em quy đồng hai vế giải đenta theo A thì sẽ tìm đc cả GTNN và GTLN
a.\(DK:\frac{2}{3}\le x< 4\)
b.\(DK:x>\frac{1}{2},x\ne\frac{5}{2}\)
c.\(DK:x\le-3\)
Bạn MaiLink ơi, bạn có thể ghi rõ ra các bước làm được không? mình không hiểu lắm. cảm ơn bạn
biểu thức chứa căn có nghiêm khi biểu thức trong căn được xác định và nó lớn hơn hoặc bằng 0
a) x\(\ge\)\(\frac{3}{4}\)
b) \(x\le\frac{3}{4}\)
c) mẫu khác 0 biểu thức trong căn xác định. khi đó đk của mẫu x\(\ne\)-1 và x\(\ne\)1 (1)
xét : \(\frac{1}{1-x^2}\ge0\)
<=> \(1\ge x^2\)
<=> \(-1\le x\le1\) (2)
từ (1) và (2) => biểu thức có nghiệm khi -1<x<1
d) nhận thấy 1+x2 luôn lớn hơn hoặc bằng 1 với mọi x ( hay mẫu khác 0)
=> biểu thức luôn có nghiệm với mọi x ( vô số nghiệm)
căn ko có nghĩa vì -5<0
là sao vậy bạn giả thích rõ hơn cho mình được không