\(\sqrt{x-5}+\sqrt{7-x}\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2017

Câu hỏi của Nguyễn Thanh Thảo - Toán lớp 8 - Học toán với OnlineMath

Bạn xem tham khảo nha

16 tháng 5 2017

người tốt nữa ak,,,,:))

24 tháng 7 2019

\(\sqrt{6-x}+\sqrt{x+2}=\sqrt{\left(1.\sqrt{6-x}+1.\sqrt{x+2}\right)^2}\) \(\le\left(1^2+1^2\right)\left(6-x+x+2\right)=2.8=16\)

24 tháng 7 2019

bạn tìm điều kiện xác định r dùng bunhiacopxki là ra nhé 

14 tháng 6 2017

a) \(x\ne\sqrt{3};x\ne-\sqrt{3}\)

b)\(x\ne3;x\ne-1\)

c)\(x\ne0;x\ne-2\)

d)\(x\ne3;x\ne2\)

10 tháng 12 2016

2/ Mình sẽ chứng minh bằng phản chứng :)

Giả sử rằng trong 100 số đó không tồn tại hai số nào bằng nhau, khi đó không mất tính tổng quát, ta gọi \(a_i< a_{i+1}....\) với \(i=\overline{1,100}\) 

Bằng cách giả sử như vậy, ta có thể đặt \(a_i\ge i\)

Ta có : \(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{100}}}\ge\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)

Đặt \(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+..+\frac{1}{\sqrt{100}}\)

Ta chứng minh bài toán phụ : Với n là số tự nhiên lớn hơn 0 thì \(\frac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-\sqrt{n}\right)\)

Thật vậy : \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)

Áp dụng với n = 1,2,...,100 được : 

\(A>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{101}-\sqrt{100}\right)\)

\(=2\left(\sqrt{101}-\sqrt{1}\right)>2\left(\sqrt{100}-1\right)=18\)

Mình làm đến đây nhưng không biết vì sao nó lại chưa chặt, có ai có cách khác không?

11 tháng 12 2016

Giả sử a1, a2, ..., a100 là 100 số khác nhau thì 

\(P=\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{100}}}\le\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}\)

Ta chứng minh với mọi n ≥ 2 thì 

\(\frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)

Ta có: \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}\)

\(=\frac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{1}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)

Áp dụng vào bài toán ta được

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}\)

\(=1+2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)

\(=1+2\left(\sqrt{100}-1\right)=19\)

\(\Rightarrow P< 19\)

Vậy nếu như a1, a2, ..., a100 là 100 số tự nhiên khác nhau thì tổng P luôn luôn < 19.

Nên để tổng P = 19 thì phải có ít nhất 2 trong 100 số đó phải bằng nhau

22 tháng 8 2019

\(Q=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\frac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

b.\(Q< 1\)

\(\Leftrightarrow x-\sqrt{x}-2< x-5\sqrt{x}+6\)

\(\Leftrightarrow4\sqrt{x}-8< 0\)

\(\Leftrightarrow0\le x< 4\)

Vay de Q<1 thi \(0\le0< 4\)

Bài 1:Tính giá trị các biểu thứca)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)a) Rút gọn biểu thức Ab) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)Bài 3 : Cho...
Đọc tiếp

Bài 1:Tính giá trị các biểu thức

a)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)

b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)

c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)

d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        

Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)

a) Rút gọn biểu thức A

b) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)

Bài 3 : Cho biểu thức \(A=\frac{\sqrt{x-1-2\sqrt{x-2}}}{\sqrt{x-2}-1}\)

a) Tìm điều kiện của \(x\)để \(A\)có nghĩa

b) Rút gọn \(A\)

c) Tính \(A\)khi\(x=\sqrt{2013}\)

Bài 4 : Cho biểu thức \(A=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\frac{x-y}{\sqrt{x}-\sqrt{y}}\)

a) Đặt điều kiện để biểu thức \(A\)có nghĩa

b) Rút gọn biểu thức \(A\)

Mấy bạn giúp mình giải với nha, mình đang cần gấp . Mình cảm ơn ạ <3

0
7 tháng 12 2016

Bài 1:

a)Đk:\(x\ge\frac{3}{2}\)

\(pt\Leftrightarrow3-x=-\sqrt{2x-3}\)

Bình phương 2 vế ta có:

\(\left(3-x\right)^2=\left(-\sqrt{2x-3}\right)^2\)

\(\Leftrightarrow x^2-6x+9=2x-3\)

\(\Leftrightarrow x^2-8x+12=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=6\end{array}\right.\).Thay vào thấy x=2 ko thỏa mãn

Vậy x=6

8 tháng 12 2016

b)Đk:\(x\ge1\)

\(pt\Leftrightarrow\sqrt{x-1}=\sqrt{3x-2}+\sqrt{5x-1}\)

Bình phương 2 vế của pt ta có:

\(\left(\sqrt{x-1}\right)^2=\left(\sqrt{3x-2}+\sqrt{5x-1}\right)^2\)

\(\Leftrightarrow x-1=\left(3x-2\right)+\left(5x-1\right)+2\sqrt{\left(3x-2\right)\left(5x-1\right)}\)

\(\Leftrightarrow x-1=8x-3+2\sqrt{\left(3x-2\right)\left(5x-1\right)}\)

\(\Leftrightarrow2-7x=2\sqrt{\left(3x-2\right)\left(5x-1\right)}\)

Bình phương 2 vế của pt ta có:

\(\left(2-7x\right)^2=\left[2\sqrt{\left(3x-2\right)\left(5x-1\right)}\right]^2\)

\(\Leftrightarrow49x^2-28x+4=60x^2-52x+8\)

\(\Leftrightarrow-11x^2+24x-4=0\)

\(\Leftrightarrow\left(2-x\right)\left(11x-2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{2}{11}\end{array}\right.\) (Loại)

Vậy pt vô nghiệm