K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCDM vuông tại D và ΔCAB vuông tại A có

góc C chung

=>ΔCDM đồng dạng với ΔCAB

b: Xét ΔMAE vuông tại A và ΔMDC vuông tại D có

góc AME=góc DMC

=>ΔMAE đồng dạng với ΔMDC

=>MA/MD=ME/MC

=>MA*MC=MD*ME

c: góc CAE=góc CDE=90 độ

=>CDAE nội tiếp

=>góc MAD=góc MEC

 

16 tháng 4 2022

a) △MDC và △MAE có: \(\widehat{MDC}=\widehat{MAE}=90^0;\widehat{DMC}=\widehat{AME}\) (đối đỉnh).

\(\Rightarrow\)△MDC∼△MAE (g-g) \(\Rightarrow\dfrac{MD}{MA}=\dfrac{MC}{ME}=\dfrac{DC}{AE}\).

b) △MDC∼△MAE (g-g) \(\Rightarrow\widehat{DCM}=\widehat{AEM}\).

c) △ABC và △DMC có: \(\widehat{BAC}=\widehat{MDC}=90^0;\widehat{C}\) chung.

\(\Rightarrow\)△ABC∼△DMC (g-g) \(\Rightarrow\dfrac{S_{DMC}}{S_{ABC}}=\left(\dfrac{MC}{BC}\right)^2=\dfrac{1}{4}\)

\(\Rightarrow\dfrac{S_{ABC}-S_{ABDM}}{S_{ABC}}=\dfrac{1}{4}\Rightarrow1-\dfrac{S_{ABDM}}{S_{ABC}}=\dfrac{1}{4}\Rightarrow\dfrac{S_{ABDM}}{S_{ABC}}=\dfrac{3}{4}\)

19 tháng 4 2022

Cảm ơn bn<333 

4 tháng 1 2017

a) Xét tứ giác ADME có:

∠(DAE) = ∠(ADM) = ∠(AEM) = 90o

⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).

b) Ta có ME // AB ( cùng vuông góc AC)

M là trung điểm của BC (gt)

⇒ E là trung điểm của AC.

Ta có E là trung điểm của AC (cmt)

Chứng minh tương tự ta có D là trung điểm của AB

Do đó DE là đường trung bình của ΔABC

⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC

⇒ Tứ giác CMDE là hình bình hành.

c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)

Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)

DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)

Từ (1) và (2) ⇒ MHDE là hình thang cân.

d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH

Xét ΔDIH và ΔKIA có

IH = IA

∠DIH = ∠AIK (đối đỉnh),

∠H1 = ∠A1(so le trong)

ΔDIH = ΔKIA (g.c.g)

⇒ ID = IK

Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành

⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC

10 tháng 4 2017

mình hem biết câu c đâu nhá

a b m d c e 1 1 2 1 2

câu a

tam giác cdm và tam giác cab có

góc d1 = góc a1 = 90 độ

chung góc c

=> tam giác cdm đồng dạng tam giác cab (gg)

câu b

tam giác mae và tam giác mdc có

góc m1 = góc m2 (đối đỉnh)

góc a2 = góc d1 ( =90 độ)

=> tam giác mae đồng dạng tam giác mdc (gg)

\(\dfrac{ma}{md}=\dfrac{me}{mc}\\ =>md.me=ma.mc\)

câu c mình hem biết, sorry :))

chúc may mắn :D

a) Xét ΔAEM vuông tại A và ΔDCM vuông tại D có 

\(\widehat{AME}=\widehat{DMC}\)(hai góc đối đỉnh)

Do đó: ΔAEM\(\sim\)ΔDCM(g-g)

b) Xét ΔBAC vuông tại A và ΔBDE vuông tại D có 

\(\widehat{B}\) chung

Do đó: ΔBAC\(\sim\)ΔBDE(g-g)

Suy ra: \(\dfrac{BA}{BD}=\dfrac{BC}{BE}\)
hay \(BA\cdot BE=BD\cdot BC\)

c) Ta có: ΔAEM\(\sim\)ΔDCM(cmt)

nên \(\dfrac{MA}{MD}=\dfrac{ME}{MC}\)

hay \(\dfrac{MA}{ME}=\dfrac{MD}{MC}\)

Xét ΔMAD và ΔMEC có 

\(\dfrac{MA}{ME}=\dfrac{MD}{MC}\)

\(\widehat{AMD}=\widehat{EMC}\)(hai góc đối đỉnh)

Do đó: ΔMAD\(\sim\)ΔMEC(c-g-c)

Suy ra: \(\widehat{MAD}=\widehat{MEC}\)

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0