Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình Tự kẻ
Xét Tam giác ABC và Tam giác DBE có : BAC = BDE ; ABC = DBE
Từ Tam giác ABC và Tam giác DBE đồng dạng suy ra góc C = Góc E
Xét Tam giác MDC và MAE (đồng dạng ) suy ra MA / MD = ME / MC , suy ra MA.MC=MD.ME
Xét tam giác MAD và Tam giác MCE có : AMD = CME ; MA/MD=ME/MC , Suy ra Tam giác MAD đồng dạng với Tam giác MEC
A B C M D E
a, Xét tam giác ABC và tam giác DBE có :
góc B chung
góc BAC = góc BDE (=90độ )
Do đó : tam giác ABC đồng dạng với tam giác DBE ( g.g )
b, Xét tam giác MAE và tam giác MDC có :
góc MAE = góc MDC ( = 90độ )
góc AME = góc DMC ( đối đỉnh )
Do đó : tam giác MAE đồng dạng với tam giác MDC ( g.g )
\(\Rightarrow\frac{MA}{MD}=\frac{ME}{MC}\)
\(\Rightarrow MA.MC=MD.ME\)
c,d : Tự làm nốt nhé , em mới lớp 7 nên đến đây chịu ạ .
Học tốt
a: Xét ΔCDM vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDM đồng dạng với ΔCAB
b: Xét ΔMAE vuông tại A và ΔMDC vuông tại D có
góc AME=góc DMC
=>ΔMAE đồng dạng với ΔMDC
=>MA/MD=ME/MC
=>MA*MC=MD*ME
c: góc CAE=góc CDE=90 độ
=>CDAE nội tiếp
=>góc MAD=góc MEC
a) △MDC và △MAE có: \(\widehat{MDC}=\widehat{MAE}=90^0;\widehat{DMC}=\widehat{AME}\) (đối đỉnh).
\(\Rightarrow\)△MDC∼△MAE (g-g) \(\Rightarrow\dfrac{MD}{MA}=\dfrac{MC}{ME}=\dfrac{DC}{AE}\).
b) △MDC∼△MAE (g-g) \(\Rightarrow\widehat{DCM}=\widehat{AEM}\).
c) △ABC và △DMC có: \(\widehat{BAC}=\widehat{MDC}=90^0;\widehat{C}\) chung.
\(\Rightarrow\)△ABC∼△DMC (g-g) \(\Rightarrow\dfrac{S_{DMC}}{S_{ABC}}=\left(\dfrac{MC}{BC}\right)^2=\dfrac{1}{4}\)
\(\Rightarrow\dfrac{S_{ABC}-S_{ABDM}}{S_{ABC}}=\dfrac{1}{4}\Rightarrow1-\dfrac{S_{ABDM}}{S_{ABC}}=\dfrac{1}{4}\Rightarrow\dfrac{S_{ABDM}}{S_{ABC}}=\dfrac{3}{4}\)
a) Xét ΔAEM vuông tại A và ΔDCM vuông tại D có
\(\widehat{AME}=\widehat{DMC}\)(hai góc đối đỉnh)
Do đó: ΔAEM\(\sim\)ΔDCM(g-g)
b) Xét ΔBAC vuông tại A và ΔBDE vuông tại D có
\(\widehat{B}\) chung
Do đó: ΔBAC\(\sim\)ΔBDE(g-g)
Suy ra: \(\dfrac{BA}{BD}=\dfrac{BC}{BE}\)
hay \(BA\cdot BE=BD\cdot BC\)
c) Ta có: ΔAEM\(\sim\)ΔDCM(cmt)
nên \(\dfrac{MA}{MD}=\dfrac{ME}{MC}\)
hay \(\dfrac{MA}{ME}=\dfrac{MD}{MC}\)
Xét ΔMAD và ΔMEC có
\(\dfrac{MA}{ME}=\dfrac{MD}{MC}\)
\(\widehat{AMD}=\widehat{EMC}\)(hai góc đối đỉnh)
Do đó: ΔMAD\(\sim\)ΔMEC(c-g-c)
Suy ra: \(\widehat{MAD}=\widehat{MEC}\)