K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

Bài 1 A=xyz+xz-zy-z+xy+x-y-1

thay các gtri x=-9, y=-21 và z=-31 vào là đc

=> A=-7680

Bài 2:a) n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n

b) 49n+77n-29n-1

=\(49^n-1+77^n-29^n\)

=\(\left(49-1\right)\left(49^{n-1}+49^{n-2}+...+49+1\right)+\left(77-29\right)\left(79^{n-1}+..+29^n\right)\)

=48(\(49^{n-1}+...+1+77^{n-1}+...+29^{n-1}\))

=> tích trên chia hết 48

c) 35x-14y+29-1=7(5x-2y)+7.73

=7(5x-2y+73) tích trên chia hết cho 7

=. ĐPCM

12 tháng 3 2023

Ta coˊ :xy+x+1x+yz+y+1y+xz+z+1z

=���+�+1+�����+��+�+����2��+���+��=xy+x+1x+xyz+xy+xxy+x2yz+xyz+xyxyz

=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)=xy+x+1x+xy+x+1xy+xy+x+11(Vıˋ xyz=1)

=�+��+1��+�+1=xy+x+1x+xy+1

=1=1

20 tháng 9 2015

mik bit nè ! **** Đà

1 tháng 11 2016

a) Áp dụng đinh lý Bê-du, ta có f(x) chia x + 1 dư \(f\left(-1\right)\); bạn tự thay x = - 1 và tính kết quả đó chính là số dư.

b) Dùng phương pháp gán giá trị riêng :

Đặt \(f\left(x\right)=\left(x^2-1\right).Q\left(x\right)+R\left(x\right)\)

Do đa thức chia có bậc không quá 2 nên đa thức dư có bậc không quá 1, nên đặt \(R\left(x\right)=ax+b\)

Thay vào và có :

\(x^{100}-x^{50}+2.x^{25}-4=\left(x^2-1\right)Q\left(x\right)+ax+b\)

Lần lượt gán cho x giá trị 1 và -1

\(f\left(1\right)=1-1+2.1-4=0.Q\left(x\right)+a.1+b\)

\(\Rightarrow a+b=-2\)

\(f\left(-1\right)=1-1+2.\left(-1\right)-4=0.Q\left(x\right)+a.\left(-1\right)+b\)

\(\Rightarrow b-a=-6\)

\(\Rightarrow b=\frac{\left(-2\right)+\left(-6\right)}{2}=-\frac{8}{2}=-4\)

\(a=\left(-4\right)-\left(-6\right)=2\)

Do đó dư là \(2x-4\)

Vậy ...